
GPU Programming
with CUDA

(Compute Unified Device Architecture)

Why?

How many Flops does a 200$ consumer GPU perform?

More than the number of people on earth?

More than the number of trees on earth?

More than the number of stars in Milky Way?

More than the debt of Germany in Euro?

More than the number of days since the Big Bang?

Why?
Consumer GPU GeForce RTX 3060 ≈ 1013 Flops (10 Teraflops FP32)

Debt of Germany in Euro: ≈ 3 × 1012

Number of days since the Big Bang: ≈ 5 × 1012

Number of stars in Milky Way: ≈ 2-3 × 1011

Number of trees on earth: ≈ 3 × 1012

Number of people on earth: ≈ 8 × 109

High end GPU Blackwell B200
≈ 5 × 1015 Flops FP16, tensor cores

Why?

Hight of a stack of paper with 1013 pages?

Higher than the altitude of a Starlink satellite?

Higher than the altitude of a geostationary satellite?

To the moon?

Higher than Mount Everest?

Why?

Thickness of paper: ≈ 0.1mm = 10-4 m

Height of a stack with 1013 pages:

1013 × 10-4 m = 109 m = 1 000 000 km ≈ 24-fold earth circumference

Altitude of Starlink satellite: 550 km

Altitude of geostationary satellite: 36 000 km

Distance to moon: 384 400 km

Height of Mount Everest: 8 848 m

GPU‘s are really fast.

Outline

• Hardware architecture of Nvidia GPUs

• Threads

• Simple example of a CUDA program running on a GPU

• Google Colab: Experimenting with CUDA using a GPU

• Data transfer between host and GPU

• Debugging

• Time measurement with events

• Constant memory

• Parallel instruction streams

• Shared memory, thread communication

Simplified Architecture of a GPU (Graphics Processing Unit)

Host Memory CPU

SM
streaming

multiprocessor

SM
streaming

multiprocessor

Global Memory (off chip ≈ 8GB)

L2 Cache (on chip ≈ 24MB)

SM
streaming

multiprocessor
…
≈ 24

G
P

U
 C

h
ip

H
o

st
G

P
U

 (
d

ev
ic

e)

PCIe Bus (≈ 50GB/s)

Values of the Nvidia Geforce RTX 4060 GPU

Simplified Architecture of a SM (Streaming Multiprocessor)

Cores
(128)

Warp

Schedulers

(4)

L2 Cache(shared among all SMs, on chip, ≈ 24 MB)

L1 Cache (local to each SM, ≈ 100kB)

Special

Function

Units (4)

Values of the Nvidia Geforce RTX 4060 GPU

Tensor

Cores

(4)

≈ 24

Global Memory (≈ 8 GB, off chip)

…
Registers (56,536 x 32bit = 256kB)

Architecture of a CUDA Core

32 bit floating point ALU

multiplier and adder
one multiplication and addition per cycle (pipelining)

32 bit integer ALU

64 bit floating point operations supported but very slow

24 SMs, 128 cores per SM → 3072 cores
2 Flops per cycle, boost clock frequency 2.46 GHz

Peak FP32 performance of Nvidia Geforce RTX 4060

15 Tflops (15 × 1012 Flops)

Memory Latency and Throughput

Registers

L1 Cache

L2 Cache

Global Memory

Latency (Cycles) Throughput (TB/s)

1

≈ 20-40

≈ 200-300

≈ 400-1000

≈ 3-5

≈ 1-2

≈ 0.2 - 0.5

Memory latency is often the limiting factor for performance!

Latency Hiding

• Make sure that enough threads are ready to run.
• While one thread waits for memory, others can use the SMs.
• Thread rescheduling costs nothing!

(Hardware registers remain allocated while threads are waiting)

Threads
Scheduler

• Group of 32 threads, handled by the warp schedulers.
(4 warp schedulers for 128 cores on each SM.)

Thread Block
• Group of threads.

The threads of a block always run on one and the same SM.
Communication within a block via shared memory of the SM.

• Threads of a warp always belong to the same block.

Grid
• Group of thread blocks.

Each block in a grid has the same blocksize.

Kernel

• C-Function which is executed by threads. Runs on the GPU.
• Declared with _ _global_ _

Warp

SM

GPU

Compiler

Threads

Local variables in each kernel:

blockDim.x Number of threads in a block

gridDim.x Number of blocks in the grid

threadIdx.x ID of the thread within its block.

blockIdx.x ID of its block within its grid.

Unique ID of the thread:

block 0 thread 0 thread 1 thread 2 …

thread 0 thread 1 thread 2 …block 1

thread 0 thread 1 thread 2 …block 2

…

gridDim.x

blockDim.x

blockDim.x * blockIdx.x + threadIdx.x

Total number of threads: blockDim.x * gridDim.x

b
lo

ck
Id

x.
x

threadIdx.x

#include <stdio.h>

// Kernel function runs on device.
_ _global_ _ void mykernel()
{

// Every thread prints its block and thread ID.
printf("number of blocks in grid %d\n", gridDim.x);
printf("number of threads in block %d\n", blockDim.x);
printf("block index %d, thread index %d\n", blockIdx.x, threadIdx.x);

}

// Host function runs on CPU.
int main(void)
{

int griddim = 2, blockdim = 3;

// Start 2 blocks with 3 threads each running function mykernel.
mykernel <<<griddim, blockdim>>> ();
return 0;

}

Example: Startup of Threads

Working with Google Colab
https://colab.research.google.com/

Create a new Jupyter Notebook on Google Drive

Working with Google Colab

Select „runtime type“ as T4 GPU.

Working with Google Colab

Before running your program: „Connect to a hosted runtime“

„Disconnect and delete runtime“ afterwards!
(time limit for free access to GPU)

Data Transfer between Host and GPU

0010011… 1101100…

Host memory Device memory

arrayhost

Address Address

arraydevice

… …

PCIe bus

Data Transfer between Host and GPU
_ _global_ _ void mykernel(float * arraydevice) { … }

int main(void)
{

int size = 1024*sizeof(float);
float * arrayhost; // pointer in host memory.
float * arraydevice; // pointer in device memory.

// Allocate memory on host and on device.
arrayhost = (float *)malloc(size);
cudaMalloc(&arraydevice, size);

// Copy memory from host to device.
cudaMemcpy(arraydevice, arrayhost, size, cudaMemcpyHostToDevice);

mykernel <<<3, 128>>> (arraydevice); // Start threads.
cudaDeviceSynchronize(); // Host waits until device has finished computations.

// Copy memory from device to host.
cudaMemcpy(arrayhost, arraydevice, size, cudaMemcpyDeviceToHost);

}

Example: Vector addition

Debugging CUDA Programs

• At the end of a programm check for errors.

cudaError_t err = cudaGetLastError();
if (err != cudaSuccess)

printf("CUDA Error: %s\n", cudaGetErrorString(err));

• Every CUDA function returns an error code.

cudaError_t err = cudaMalloc(&arraydevice, size);
if(err != cudaSuccess)

printf("CUDA Error %s\n ", cudaGetErrorString(err));

Debugging CUDA Programs

• Enclose all CUDA function calls in a macro.

#define CHECK(call) \
do \
{ \

cudaError_t err = call; \
if(err != cudaSuccess) \
{ \

printf("Error at %s %d : %s\n", _ _FILE_ _, _ _LINE_ _, cudaGetErrorString(err)); \
exit(EXIT_FAILURE); \

} \
} \
while(0) // only one iteration to create local scope for variable err.

CHECK(cudaMalloc(&arraydevice, size));

Debugging CUDA Programs

• Compare floating point results of GPU with CPU

Floating point standard IEEE 754 guarantees identical results on CPU and GPU.

GPU uses „fused multiply add“ by default: fma(a,b,c) = round(a × b + c).

CPU rounds after each instruction: round(round(a × b) + c).

Solution 1: switch off fma on GPU. Compile with

nvcc –-fmad false

Solution 2: use fma on CPU. Compile with

nvcc –Xcompiler= "-mfma –march=native"

#include<math.h>

fmaf(a,b,c); // instead of a*b+c

Optimizing compiler might still change order of floating point operations causing differences!

// Create two CUDA events.
cudaEvent_t event1, event2;
cudaEventCreate(&event1);
cudaEventCreate(&event2);

// Add events and kernel to instruction stream for GPU.
cudaEventRecord(event1);
mykernel<<< 16, 128 >>> (…);
cudaEventRecord(event2);

// Host waits until event2 has been processed by GPU.
cudaEventSynchronize(event2);

// Elapsed time in milliseconds.
float milliseconds;
cudaEventElapsedTime(&milliseconds, event1, event2);
printf("Elapsed time for kernel in ms: %f\n", milliseconds);

Time Measurement with CUDA Events

Example: Vector addition with events

In host function:

Constant Memory

Constant Memory ≈ 64kB

…

PCIe Bus

Values of the Nvidia Geforce RTX 4060 GPU

SM
streaming

multiprocessor

Constant memory
cache ≈ 8kB

SM
streaming

multiprocessor

Constant memory
cache ≈ 8kB

SM
streaming

multiprocessor

Constant memory
cache ≈ 8kB

Fast read-only memory with local cache on each SM (unfortunately very small).

Function parameters to a kernel are also passed via constant memory.

Constant Memory

// Global variable for constant memory.
_ _constant_ _ float constarray[1024];

// GPU can only read (not write) constant memory.
__global__ void mykernel(…)
{

float value = constarray[…];
}

// Host copies local memory to constant memory on GPU.
int main()
{

float hostarray[1024];
…
cudaMemcpyToSymbol(constarray, hostarray, 1024*sizeof(float));
mykernel<<< 16, 128 >>>(…);

}

Example: Vector addition with constant memory

Parallel Instruction Streams

Purpose:

• Execute several kernels in parallel streams.

Operations within a stream run sequentially
Operations in different streams run concurrently

• Interleave computation and data transfer with host:
one stream waits for data transfer while other stream uses SM‘s.

CUDA stream:

Sequence of operations runing on GPU
(kernel launches, events, memory transfers)

Higher throughput.

Parallel Instruction Streams
GPU stream A Host GPU stream B

Data Transfer

SMs working

SMs working

SMs working

SMs working

Data Transfer

Data Transfer

Data Transfer

Data Transfer

„latency hiding“: With a single stream only half the utilization!

// Create two parallel streams.
cudaStream_t streamA, streamB;
cudaStreamCreate(&streamA);
cudaStreamCreate(&streamB);

// Add kernel1 and kernel2 to stream A.
kernel1<<< 32, 256, 0*, streamA >>> (…);
kernel2<<< 10, 128, 0*, streamA >>> (…);

// Add kernel3 to stream B.
kernel3<<< 16, 512, 0*, streamB >>> (…);

// Stream A and B run concurrently.

// Wait for streams to finish.
cudaStreamSynchronize(streamA);
cudaStreamSynchronize(streamB);

Parallel Instruction Streams

If no stream argument is provided, default stream 0 is used.

*Third parameter in <<< … >>> is used for shared memory

Asynchronous data transfer between host and a stream

// Memory allocation (pinned on host!)
float *arrayhost, *arraydevice;
cudaMallocHost(&arrayhost, size); // Memory is not swapped out by host OS!
cudaMalloc(&arraydevice, size);

// Create stream.
cudaStream_t stream; cudaStreamCreate(&stream);

// Add data transfer host → device to stream (non-blocking for host!)
cudaMemcypAsync(arraydevice, arrayhost, size, cudaMemcpyHostToDevice, stream);

// Add kernel invocation to stream.
mykernel<<< 32, 256, 0, stream >>> ();

// Add data transfer device → host to stream (non-blocking for host!)
cudaMemcypAsync(arrayhost, arraydevice, size, cudaMemcpyDeviceToHost, stream);

// Host waits until stream is processed.
cudaStreamSynchronize(stream);

Parallel Instruction Streams

Example: Vector addition on two parallel streams

Events can be added to a streams and used for synchronization

// Create event.
cudaEvent_t event;
cudaEventCreate(&event);

// Create streams.
cudaStream_t streamA, streamB;
cudaStreamCreate(&streamA);
cudaStreamCreate(&streamB);

// Add event to streamA.
cudaEventRecord(event, streamA);
kernel1<<< 3, 64, 0, streamA >>> (…);

// streamB launches kernel2 only after streamA has processed event.
cudaStreamWaitEvent(streamB, event, 0);
kernel2<<< 2, 32, 0, streamB >>>(…);

Parallel Instruction Streams

• Declaration of a shared variable in a kernel.

Shared Memory / Thread Communication

_ _global_ _ int x;

Variable is shared among all threads of the grid.
Stored in global memory (slow!).

_ _shared_ _ int x;

Variable is shared among all threads of the same block.
Stored in local memory of the SM (L1 cache / shared memory).
Remember: all threads of a block run on the same SM.

_ _syncthreads();

Synchronize all threads of a block.
Thread waits until all other threads of its block are at this point.

• Synchronization of threads.

SM
streaming

multiprocessor

L1 Cache /
Shared Memory

L2 Cache – Global Memory

SM
streaming

multiprocessor

L1 Cache /
Shared Memory

SM
streaming

multiprocessor

L1 Cache /
Shared Memory

…

Shared Memory / Thread Communication

• Shared memory uses the same physical memory chip as L1 cache.

• Organized in 32 memory banks.
Fast access of consecutive addresses by a warp.

__global__ void mykernel()
{

_ _shared_ _ int x = 17; // Initialize shared variable x with 17.
_ _syncthreads(); // Wait until all threads are here.

if(threadidx.x == 0)

x = 42; // Thread 0 writes 42 to shared variable x.

_ _syncthreads(); // Wait until all threads are here.

if(threadidx.x == 1)

printf("x = %d\n", x); // Thread 1 reads shared variable x.
}

int main()
{

mykernel<<<1, 2>>>(); // Start one block with two threads.
}

Shared Memory / Thread Communication

Dynamic shared memory: Size is determined at runtime!

Shared Memory / Thread Communication

_ _global_ _ mykernel(…)
{

extern _ _shared_ _ int mem[]; // Shared memory block.

// All threads of this thread block have access to the fast shared memory mem.
}

int main()
{

int lengt = 10; // Length of shared memory block (dynamic)
int size = length*sizeof(int); // Size of shared memory block in bytes

// size bytes are reserved in L1 cache / shared memory for each thread block.
mykernel<<<16, 128, size>>>(…);

}

Example: Parallel median filter

Discrete Convolution with CUDA

Project Proposals

Use constant memory for impulse response (< 64kB)

Parallel streams to hide latency of PCIe bus
• Split input signal in overlapping blocks
• Real time capability

Use fast shared memory for input signal to hide latency of global memory

Timings and speedup curves with different block/grid size

DFT of a sequence of vectors with CUDA

Use constant memory for B-Matrix (Phasors < 64kB)

Parallel streams for consecutive vectors

Split dot product of a large vectors into several parallel threads

