GPU Programming
with CUDA

Prof. Dr. V. Stahl
Heilbronn University of Applied Sciences

November 29, 2025

CONTENTS

Contents
1 First Steps
1.1 How to do Experiments
1.2 First Example
1.3 Parallel Vector Addition
2 Architecture of a GPU
2.1 Processors
2.2 Memory
3 Kernels, Threads and Thread Blocks
3.1 Kernels
3.2 Thread Blocks
33 Warps
4 Floating Point Arithmetic
5 Status of the GPU
5.1 Command line Tool nvidia-smi . .
5.2 Status at Runtime with NVML . . .
6 Measuring Computing Time
6.1 CUDAEvents.
6.2 Cycle Counter on GPU
6.3 Wall-Clock on Host
6.4 Variable Clock Frequency
6.5 Thermal Throttling.
7 Optimization
7.1 Compiler Flags
7.2 Loop Unrolling
7.3 Restricted Pointers
7.4 Fused Multiply Add
7.5 PTX Machine Code
8 Constant Memory
9 Shared Memory and Synchronization

9.1 Race Conditions
9.2 Dynamic Shared Memory
9.3 Memory Banks

10 Registers

11 Case Study Convolution

11.1 Mathematical Background
11.2 Hardware
11.3 Experiments.
11.4 Optimization
11.5 Further Considerations on Efficiency

-

11
11
11
12

13

14
14
14

16
16
17
17
17
18

19
19
19
19
20
20

22

23
24
24
27

28

CONTENTS 3
12 Streams 35
12.1 Asynchronous Memory Transfer 36
13 Tensor Cores for Matrix Multiplication 37
13.1 Matrix Tiles o e e e e e 37
13.2 Tensor Cores o v v v v e e e e e e e e e 38
13.3 Warp Matrix Multiply and Accumulate (WMMA) 39
14 cuBLAS Library for Linear Algebra 41
14.1 Example: Matrix Multiplication with cuBLAS 41
14.2 Parallel Streams with cuBLAS 43
15 cuBLASLt Library for Linear Algebra 45
15.1 Example: Matrix Multiplication with cuBLASLt 45

1 FIRST STEPS 4

1 First Steps

1.1 How to do Experiments

In case you don’t have a computer with a CUDA GPU, a native CUDA driver
and CUDA toolkit, you can still do hands on experiments with CUDA using
Google Colab for free, see [5].

1.2 First Example

Let us begin with a simple CUDA program.

#include <stdio.h>

// This function is executed by every thread on the GPU (device).
__global__ void mykernel()
{

// Every thread prints its block and thread ID.

printf ("block/thread id %d/%d\n",blockIdx.x,threadldx.x);

}

// The main function runs on the CPU (host).
int main(void)

{
// Start 2 blocks with 3 threads on GPU.
mykernel<<<2,3>>>();

// Wait for GPU to finish.
cudaDeviceSynchronize() ;

return O;

The program is mostly C++ except for the line mykernel<<<2,3>>>. It has
therefore to be translated with a special NVIDA compiler called nvcc.

Functions which run in threads on the GPU are called “kernels” and have to be
declared with __global__.

The program starts 6 parallel threads which are organized in two blocks with
three threads per block. The set of all blocks is called grid. Each thread prints
the id of the block it is in and the id of the thread within its block.

1 FIRST STEPS 5

1.3 Parallel Vector Addition

The following program adds two vectors in parallel on the GPU and verifies the
result on the CPU.

#include <stdio.h>

// Kernel function to add the elements of two arrays.
__global__ void add(int n, float* x, float* y, float* z)

{
int numBlocks = gridDim.x; // Number of blocks.
int numThreadsPerBlock = blockDim.x; // Number of threads in each block.
int blockIndex = blockIdx.x; // Index of block in grid.
int threadIndex = threadIdx.x; // Index of thread in block.

int threadId = blockIndex * numThreadsPerBlock + threadIndex;
int numthreads = numThreadsPerBlock * numBlocks;

for(int i=threadId; i<n; i+=numthreads)
z[i] = x[i] + y[il;
}

int main(void)

{
int n = 1<<20;
int nbytes = n*sizeof(float);
float *x, *y, *z;

// Allocate unified memory - accessible from both CPU and GPU.
cudaMallocManaged (&x, nbytes);
cudaMallocManaged(&y, nbytes);
cudaMallocManaged (&z, nbytes);

// Initialize x and y arrays on the host.
for(int i=0; i<n; i++)
{
x[i] = ...;
ylil
}
add<<<20, 32>>>(n,x,y,z); // 20 blocks, 32 threads per block

// Wait for GPU to finish.
cudaDeviceSynchronize() ;

// Compare addition on GPU with addition on CPU.
float maxerr = 0.0f;
for (int i=0; i<n; i++)
maxerr = fmax(maxerr, x[il+y[i]l-z[i]);
printf ("Max error: %f\n",maxerr);

// Free memory.
cudaFree(x); cudaFree(y); cudaFree(z);
return O;

1 FIRST STEPS 6

The program starts 20 x 32 = 640 threads to add a vector with 220 ~ 106
components, such that each thread adds about 1634 numbers. The work is
distributed such that thread 0 adds components 0,32,64,..., thread 1 adds
components 1, 33,65, ... and so on. For this purpose each thread calculates its
id threadId and the total number of threads numthreads.

Memory has to be allocated to store the input vectors x and y and the result z.
The problem is that CPU and GPU use separate memory. The memory of the
CPU is on the motherboard whereas the memory of the GPU is on the graphics
card. Therefore a copy of x,y, z is needed in both memories and data has to
be transferred at the right time in the proper direction. By allocating memory
with cudaMallocManaged() this is done transparently. Memory allocated in
this way has to be freed with cudaFree().

If you want to program memory allocation and data transfer between host and
device explicitly, it works as follows:

float * xhost; // Address in host memory.
float * xdevice; // Address in device memory.

// Allocate memory on host and on device.
xhost = (float*)malloc(nbytes);
cudaMalloc (&xdevice, nbytes);

// Transfer data from host to device.
cudaMemcpy (xdevice, xhost, nbytes, cudaMemcpyHostToDevice));

// Transfer data from device to host.
cudaMemcpy (xhost, xdevice, nbytes, cudaMemcpyDeviceToHost));

// Free memory.
free(xhost);
cudaFree(xdevice) ;

2 ARCHITECTURE OF A GPU 7

2 Architecture of a GPU

In order to understand why threads are grouped into blocks, how they communicate
and how to achieve good performance, a basic understanding of the architecture of a
GPU is necessary.

2.1 Processors

The main components of a graphics processing unit (GPU), also called device, is the
GPU chip and memory chips.

o Graphics Processor (GPU chip). The GPU chip consists of several stream-
ing multiprocessors (SM), L2 cache memory and constant memory.

SM SM SM
o
g
(@)
x
tant
L2 Cache (;/?ns an S =
emory ol
O
Global Memory
PCle Bus
Host Memory CPU é

Let’s take the Nvidia GeForce RTX 4060 as an example. It was introduced on
June 29, 2023 with a starting price of 2993. It has 8GB off chip global memory,
24 MB L2 cache and 64kB constant memory. The bus width between off chip
global memory and L2 cache is 128 bits with a peak bandwidth of 272 GB/s.
Its GPU chip is a AD107 (Ada Lovelace microarchitecture) and has 24 SMs.

o Streaming Multiprocessor (SM).
An SM consists of several (usually 128) CUDA cores. It has special memory
which can be split into L1 cache and shared memory and is accessible to all cores.
The shared memory can be used for communication and synchronization among
threads running in a block on the SM. Thread blocks are explained in detail in
Section 3, for the moment it suffices to know that a block is a logical group of

2 ARCHITECTURE OF A GPU 8

threads. While the cache controller decides what data is stored and replaced in
the L1 cache, the programmer has explicit control over shared memory. Further
each SM has a small cache to access constant memory.

An SM has several special function units (SFU) for functions like, sin, cos, log,
tensor cores (TC) for fast matrix operations and warp schedulers (WS).

In order to schedule the parallel threads running on an SM it has several (typi-
cally 4) warp schedulers (WS).

Core SFU TC WS

Registers |

Streaming Multiprocessor

| L1 Cache / Shared Memory | | Constant Cache |

Yy []

| L2 Cache | |C0nstant Memory|

On the Nvidia GeForce RTX 4060 each SM has 128 cores, 4 SFU, 4 WS, 100
kB of shared memory /L1 cache, 8kB constant cache and 56 536 registers with
32bit.

« CUDA Core.
A core consists usually of a single precision FP32 ALU and an an INT32 ALU.
The ALUs have a pipelined multiplier and adder. These can be configured such
that in each cycle a fused addition-multiplication can be carried out, which is
the basic operation for computing dot products.
On the Nvidia GeForce RTX 4060 some of the hardware is shared between cores.
Therefore it is either possible to execute 128 FP32 operations or 64 FP32 and
64 INT32 operations per cycle on an SM.
Double precision floating point arithmetic is also possible, but slower by factor
64 compared to single precision.

With a base/boost clock frequency of 1.83/2.46 GHz and 24 x 128 = 3072 cores, the
RTX 4060 has a theoretical peak FP32 performance of 15 TFLOPS (multiply-add
counts as two operations) but only 236 GFLOPS with FP64.

2.2 Memory

There are several kinds of memory on a GPU:

¢ Global memory. This is off-chip memory on the graphics card, which is shared
by all SMs. Global memory is accessed through an on-chip L2 cache.

2 ARCHITECTURE OF A GPU 9

e Constant memory. Like global memory this memory can be accessed by all
SMs and comes with a local cache on each SM. It can be written only by the
host, but not by the GPU. The advantage of constant memory is that it can
reduce memory latency significantly, especially because of the cache on each SM.

o L1 cache/shared memory on each SM. This is a physical memory device
which can be divided logically into two parts by the programmer:

— L1 cache. This is a shared resource accessible by all threads running
on the SM. If different blocks running on an SM access the same data in
global memory, it is copied only once to the L1 cache of that SM. A cache
controller (hardware) manages loading data from global memory into L1
cache. This controller decides where to store data within the cache, and
determines which cache lines to replace when the cache is full. The primary
goal is to minimize cache misses and improve memory access performance.

— Shared memory. A local variable in a kernel declared with modifier

__shared__ is shared among all threads of a block. It can therefore be
used for communication between threads of the same block. In contrast to
L1 cache, shared memory is software managed, which means that the code
of a kernel has to make explicit, which data is stored in shared memory.
Shared memory is organized into 32 independent banks. This banking
allows parallel threads to access consecutive word addresses efficiently with
minimal conflicts, which maximizes memory bandwidth and reduces access
latency.
While threads can communicate via global memory as well, it is signifi-
cantly slower than shared memory due to higher latency and lower band-
width. Further, global memory is shared between all SMs of the GPU
whereas shared memory is local to each SM.

Shared Memory

Addr. 32 bit Addr. 32 bit Addr. 32 bit
0 1 31
32 33 o 63
64 65 95
Bank 0 Bank 1 Bank 31

¢ Unified memory. CPU and GPU have separate address spaces and data has
to be copied between main memory of the CPU and global memory of the
GPU with explicit function calls. Unified (or managed) memory is a common,
virtual adress space for CPU and GPU. Data transfers are done as needed by
the memory management system in a transparent way.

Latency differs significantly between the above mentioned memories and is important
to take into account when developing software for GPUs. Typical figures are as follows:

Registers 1 cycle
Constant cache 20 — 40 cycles
L1 cache 20 — 40 cycles
L2 cache 200 — 300 cycles

Constant memory 200 — 300 cycles
Global memory 400 — 800 cycles

2 ARCHITECTURE OF A GPU 10

In order to avoid idle times while waiting for data traveling up the memory hierarchy,
GPUs can switch between threads (more precisely groups of threads called warps)
with no delay. Thus, while one thread waits, another one can take over. This so called
“latency hiding” works well as long as there are sufficiently many active threads. A
GPU has no other layers of cache apart from L1 and L2 and relies heavily on latency
hiding to gain efficiency. In contrast, CPUs use typically 3 layers of cache to reduce
latency.

3 KERNELS, THREADS AND THREAD BLOCKS 11

3 Kernels, Threads and Thread Blocks

3.1 Kernels

A kernel is a C++ function, which is executed on the GPU by many threads in parallel.
It is declared with

__global__ void mykernel(argument list)
and called from a function running on the host with
mykernel<<<gridsize, blocksize>>>(argument list) ;

As this is not C++ syntax, a GPU program has to be compiled with a special compiler
called nvce, which is a frontend to the GNU C++ compiler on Linux. The meaning
of gridsize and blocksize is described in Section 3.2.

The modifier __global__ in a function declaration means that the function is called
from the host, but runs on the device. A modifier __device__ means that the function
can be called only from the device and runs on the device. There is a third (optional)
parameter __host__ for functions which are called by the host and run on the host.
The modifiers can be combined to tell the compiler to generate code for both host and
device.

3.2 Thread Blocks

Threads are grouped into thread blocks (TB). All threads within a block execute the
same kernel, run on the same SM and can not be distributed over several SMs. The
reason is that threads within a block can communicate and synchronize using the
shared memory of the SM they are running on. An SM can execute several thread
blocks simultaneously. Thread blocks can not communicate with each other.

Threads blocks are grouped into a grid. All blocks in a grid contain the same number
of threads.

Grid
TB 1 TB 2 TB m
Thread 1 Thread 1 Thread 1
Thread 2| |[Thread 2(= |Thread 2
Thread n| |[Thread n Thread n

The correspondence between software and hardware can be summarized as follows:

thread executes a kernel (C++ function)
block runs on a SM (hardware)
grid runsona GPU (hardware)

When a thread executes a kernel, it can figure out the gridsize, the blocksize, the id of
its block and its id within the block. This information can be used to obtain a unique
id of the thread:

3 KERNELS, THREADS AND THREAD BLOCKS 12

__global__ void mykernel(...)

{
int gridsize = gridDim.x;
int blocksize = blockDim.x;
int blockid = blockIdx.x;

int threadid = threadldx.x;
int myid = blocksize*blockid + threadid;

}

The reason for the x’s is that threads and blocks can be organized in two- or three-
dimensional arrays.

3.3 Warps

The threads within a block are grouped at runtime into fixed warps consisting of 32
threads. As a consequence every thread in a warp belongs to the same block and
executes the same kernel code. If a the blocksize is not a multiple of 32, then a warp
may contain less than 32 threads leaving some of its lanes empty.

In early Nvidia microarchitectures all threads in a warp executed the same instruction
in every cycle (lockstep synchronous). If a branch occured, the two paths had to be
executed sequentially. The threads which took one branch were executed while the
others were masked out and vice versa. This policy is called single instruction multiple
threads (SIMT) model. The difference to the single instruction multiple data (SIMD)
scheme according to [4] is that the former allows thread specific branches.

Starting with the Volta microarchitecture in 2017, Nvidia introduced independent
thread scheduling. This means that each thread in a warp can now step independently
through instructions and has its own program counter. This improves utilization but
breaks the old implicit lockstep assumption.

Usually there are 4 warp schedulers per SM. The task of a warp scheduler is to pick
a warp which is ready to run and let it use the hardware of the SM. With 4 warp
schedulers and 32 threads per warp, each of the 128 cores of the SM can be utilized.
Some warp schedulers have a “dual-issue capability”, which means that they can issue
two independent instructions to a warp in the same cycle. For example, a scheduler
could issue a floating-point operation and a memory operation simultaneously.

Different warps execute independently. Context switches between warps cost nothing
because each warp has its own physical set of registers.

The choice of gridsize and blocksize depends on the underlying hardware and data
dependendies. As a general rule, the blocksize should be a multiple of a warp. A good
starting point is 128 or 256. With 128 threads per block a single block can occupy
an SM entirely. In order to avoid idle times due to memory latencies, 256 or 512 is
often a better choice. The gridsize is chosen such that enough threads are activated to
occupy all cores. A limiting factor is that the resources of an SM like for example its
shared memory have to be subdivided among the blocks assigned to this SM. If there
are too many blocks, the shared memory of each block might run out and the blocks
have to run sequentially.

4 FLOATING POINT ARITHMETIC 13

4 Floating Point Arithmetic

According to the IEEE Standard 754 on binary floating point arithmetic [7] [8] the
result of an addition or multiplication is always rounded to a representable floating
point number. As a consequence, laws of arithmetic like

(r+y)z = wzz+yz
Tty +z = z++2)

no longer hold for floating point numbers and optimizing code by rearranging the order
of arithmetic operations in parallel algorithms may result in different results.

In many applications like dot products, a multiplication is followed by an addition.
In a revision of the IEEE Standard 754 a fused multiply-add (FMA) operation was
added. With the FMA operation we obtain

round(zy + 2)
instead of
round(round(zy) + z).

Therefore the FMA operation gives more accurate results and is usually faster.

While GPUs use FMA [3] [11], ordinary CPUs don’t by default. When comparing
results of a GPU with a CPU one has to compile with flag fmad as in

nvcc --fmad false program.cu

to switch off FMA on the GPU.

A better choice is to enable FMA on the CPU in order to obtain results which are
identical on CPU and GPU. The compiler flags for the GNU compiler are

nvcc -Xcompiler -mfma program.cu

see documentation on nvce in [10].

More information on floating point arithmetic with CUDA can be found in [2].

5 STATUS OF THE GPU 14

5 Status of the GPU

The status of the GPU can be queried from the command line with nvidia-smi or at
runtime from a CUDA program using the Nvidia Management Library (NVML).
5.1 Command line Tool nvidia-smi
The current status of the GPU can be listed with

nvidia-smi -q

If one is interested only in certain aspects like the clock frequency or the temperature
and their limits, one can query with

nvidia-smi -q -d clock
nvidia-smi -q -d temperature

If one wants to know only the value of a certain variable like the current temperature
or the clock frequency of the SMs, the query is

nvidia-smi --query-gpu=temperature.gpu --format=csv,noheader
nvidia-smi --query-gpu=clocks.current.sm --format=csv,noheader

A list of all available variables is obtained with

nvidia-smi --help-query-gpu

5.2 Status at Runtime with NVML

The current clock frequency of the SMs and memory as well as the temperature can
be checked from a CUDA program with the NVML API:

#include <nvml.h>

nvmlDevice_t device;
unsigned int smclock, memclock, temp;

nvmlInit();
nvmlDeviceGetHandleByIndex (0, &device);

nvmlDeviceGetClockInfo(device, NVML_CLOCK_SM, &smclock);
nvmlDeviceGetClockInfo(device, NVML_CLOCK_MEM, &memclock);
nvmlDeviceGetTemperature(device, NVML_TEMPERATURE_GPU, &temp);

printf ("current SM clock: %u MHz", smclock);

printf ("current memory clock: %u MHz, memclock) ;
printf ("current temperature: %u\n", temp);

The program has to be linked with libnvidia-ml.so or using flag -1nvidia-ml:

5 STATUS OF THE GPU

15

nvcc program.cu -lnvidia-ml
Under linux the library is installed here:

/usr/1lib/x86_64-linux-gnu/libnvidia-ml.so

6 MEASURING COMPUTING TIME 16

6 Measuring Computing Time

Computing time can be measured at runtime using events or evaluated after completion
of the program with a profiler. In both cases one has to take into account that the
GPU clock frequency may vary at startup or be reduced to avoid overheating.

6.1 CUDA Events

The recommended method to measure computing time at runtime is the use of CUDA
events. The usage is as follows:

cudaEvent_t eventl, event2;
cudaEventCreate (&event1) ;
cudaEventCreate (&event?2) ;

// Add eventl to instruction stream on GPU.
cudaEventRecord(eventl);

// Add kernels to instruction stream on GPU.
mykernel<<<gridsize, blocksize>>>(...);

// Add event2 to instruction stream on GPU.
cudaEventRecord(event2) ;

// Host waits until event2 was processed by GPU.
cudaEventSynchronize (event2) ;

// Elapsed time is difference between the time stamps of the two events.
float milliseconds = 0.0;
cudaEventElapsedTime (&milliseconds, eventl, event2);

// Cleanup
cudaEventDestroy(eventl) ;
cudaEventDestroy (event2) ;

This measures the wall-clock computing time of the kernel on the GPU. The mecha-
nism is as follows: The host generates a stream (see Section 12) of instructions which
are executed sequentially on the GPU. With

cudaEventRecord(eventl) ;
mykernel<<<gridsize, blocksize>>>(...);
cudaEventRecord (event?2) ;

three instructions are set on a stream: event 1, the kernel, and event 2. Setting
instructions on a stream does not block the host. If the GPU finds an event on the
stream, it will store the current GPU time in that event. With

cudaEventSynchronize (event?2) ;

the host is blocked until the GPU has processed event 2.

You can write an arbitrary number of kernels and events on a stream. They are always
processed sequentially. CUDA events are also used for synchronization when multiple
streams are used, see Section ?7.

6 MEASURING COMPUTING TIME 17

6.2 Cycle Counter on GPU

Each SM has a cycle counter whose value can be queried in a kernel with clock64().
The return type is unsigned long. Its frequency is the same as the GPU clock fre-
quency. Both CUDA events and clock64 () measure wall-clock time from the perspec-
tive of the GPU. This means that time periods during which a suspended thread is
waiting are also counted.

6.3 Wall-Clock on Host

Wall-clock time intervals can be measured with microsecond precision on the host as
follows:

#include <sys/time.h>

struct timeval start, end;

gettimeofday(&start, NULL);

éé‘;timeofday(&end, NULL) ;

double seconds = (double) (end.tv_sec - start.tv_sec);

seconds += (double) (end.tv_usec - start.tv_usec)/(1.0e6);
printf ("Total elapsed wall-clock time: %f seconds\n", seconds);

6.4 Variable Clock Frequency

The clock frequency of a GPU is very low to reduce power consumption when the GPU
is idle. Only when the GPU is active, the frequency is increased to its maximum, which
takes between 10 and 200ms. This delay has a significant impact on the measured
computing time especially for programs with small execution time. One simple solution
is to start timing only after the GPU has already been running for some time and
reached its maximum frequency. See Section 5 on how to find out the current clock
frequency of the SMs.

With some GPUs it is possible to lock the clock frequency to a certain value or range.
sudo nvidia-smi -1lgc 1200,1800

Unlocking is done with
sudo nvidia-smi -rgc

The same can be done with memory clock frequency:

sudo nvidia-smi -1lmc 2125,2125
sudo nvidia-smi -rmc

On Linux these operations require root privileges.

6 MEASURING COMPUTING TIME 18

6.5 Thermal Throttling

If a long series of experiments is carried out, the GPU may heat up and in order to
avoid damage, clock frequency is reduced when a certain limit is reached (thermal
throttling). Obviously this can lead to wrong time measurements. See Section 5 on
how to find out the current GPU temperature and the temperature where throttling
sets in.

Some Nvidia drivers log performance reductions and their reasons since the last time
the driver was loaded. Run

nvidia-smi -q -d performance

and check for Performance State and Clocks Throttle Reasons.

7 OPTIMIZATION 19

7 Optimization

7.1 Compiler Flags

Compilers are able to optimize code in various ways. The corresponding flag for the
GNU C++ compiler is -0 followed by the optimization level. For example -03 gives
very good results.

If small inaccuracies with floating point arithmetic are tolearble, the flag -fast-math
is worth trying. It allows the compiler to reorder floating point operations and ignore
exceptional floating point values NaN, Inf and denormalized numbers.

Some flags have to bypass nvcc to the underlying GNU compiler. In this case use
-Xcompiler as for example in

nvcc -Xcompiler -mfma program.cu

7.2 Loop Unrolling

By default nvce uses loop unrolling for optimization, which has a huge effect in many
cases. In order to switch it off for test purposes, write

#pragma unroll 1

directly before a loop. The number behind unroll is the number of times the code in
the body of the loop is duplicated.

If a variable, which determines the number of iterations of a loop, is known at com-
piletime, loops can be unrolled easily. Execution time of programs can therefore be
reduced significantly if such variables are replaced by constants whenever possible.

7.3 Restricted Pointers

When a pointer variable is declared with modifier __restrict__, the compiler is in-
formed that there is no other way to access the memory region addressed by the
pointer. This allows the compiler to make significant optimizations. Without __restrict__,
the compiler has to assume that two different pointers might be pointing to the same
memory location (this is called “aliasing”), which prevents several optimizations.

For example, in a kernel that adds two arrays, a and b and stores the result in a c, the
pointers should be declared __restrict__ to ensure that the compiler can optimize
the memory access.

7 OPTIMIZATION 20

__global__ void add

(
float* __restrict__ a,
float* __restrict__ b,
float* __restrict__ c,

int n
)
{
int i = blockIdx.x * blockDim.x + threadldx.x;
if (i < n)
{
clil = ali] + blil;
}
¥

7.4 Fused Multiply Add

nvcc usually translates a muliply-add operation like

d

axb+c

into a single machine instruction. If you want to make it explicit, write

Q.
]

fmaf (a,b,c)

7.5 PTX Machine Code

Sometimes it hard to explain why minor modifications in a program lead to significant
changes in computing time. In such cases it can help to look into the PTX code
generated by the nvce compiler. PTX stands for Parallel Thread Execution and is a
portable, intermediate machine code in ASCII format.

The graphics driver (more concretely ptxas, Nvidia’s assembler) translates PTX to
executable binary code (often called SASS for “streaming assembler”) for the specific
microarchitecture of the given GPU.

You can generate PTX code from your CUDA program with
nvcc -ptx -lineinfo program.cu

Flag -lineinfo adds references to the lines in the source code, which helps to match
PTX instruction with the corresponding CUDA instructions. For example

.loc 1547

is a reference to line 54 and column 7 in the fist file of the source code.

PTX uses an arbitrary amount of registers, which are declared at the beginning. For
example

7 OPTIMIZATION 21

.reg .£32 %£<388>;

declares %f0 ... %£388 as registers for floating point numbers. The actual mapping to
physical registers is done by the graphics driver.

Memory load and store operations (1d, verb?st?) can easily be found in a PTX file.
For example

1d.global.nc.£32 w17, [hrd10+8];

means loading from global memory register £17. The nc stands for “non coherent”
and means that the value should not be cached. The address is taken from a pointer
stored in register %rd10 plus offset 8 Bytes and the brackets mean dereferencing.

The line
fma.rn.f32 %f24, %£23, %f22, %f21;

is a floating point (£32) fused multiply add (fma) operation with round to nearest (rn).
The order of the registers has to be interpreted as

w24 = %£23 * %£22 + Yf21

8 CONSTANT MEMORY 22

8 Constant Memory

In many cases data is transferred from the host to the GPU and is used read only
there. Such data should be written to constant memory on the GPU because constant
memory is faster than global memory.

In the following example an array with 1024 floating point numbers shall be copied
to constant memory. The array is declared with modifier __constant__ outside all
functions such that it can be used in the main function and the kernel. The host writes
data to this array with function cudaMemcpyToSymbol(). This has to be done before

the grid is launched.

// Constant array (pointer to constant device memory)
// Must be declared global. Host writes, kernel reads.
__constant__ float arrayDeviceConst[1024];

__global__ void mykernel()

{
int tid = threadIdx.x;

float val = arrayDeviceConst[tid];

}

int main()

{
// Array on host.
float arrayHost[1024];

// Fill array with some data
for (int i = 0; i < 1024; i++)
arrayHost[i] = (float)i;

// Copy arrayHost from host to arrayDeviceConst on device.
cudaMemcpyToSymbol (arrayDeviceConst, arrayHost, sizeof (arrayHost));

// Launch grid
mykernel<<<30, 256>>>();

//

Constant memory is global in the sense that each SM sees the same content. The
reason why it is so fast is that each SM has a local cache for it.

In case you wondered: If a kernel takes arguments, they are always passed via constant
memory from the host to the device.

9 SHARED MEMORY AND SYNCHRONIZATION 23

9 Shared Memory and Synchronization

If a host allocates memory block with cudaMalloc and passes its address as a function
argument to a kernel, then all threads running the kernel have access to this block. In
that sense, global memory is always shared among all threads. The problem is that
global memory is very slow.

Local variables in a kernel are not shared because each thread has its own copy. If you
want to share a local variable with the entire grid, declare it with modifier __global__.
The variable is then stored in (slow) global memory.

If a local variable is declared with modifier __shared__, it is shared among all threads
of the same block. 1t is stored physically in the same fast memory as the L1 cache.

As the threads of block always run in the same SM and shared memory is local to
each SM, it makes sense that the variable is shared only within a block. Threads in
different blocks can not share memory other than global memory.

In the following example two threads run a kernel mykernel, which declares a shared
variable x and initializes it with 17. Thread 0 writes value 42 to x and thread 1 reads
x and obtains 42. Without modifier __shared thread 1 would read the initial value
17 for x.

S

#include <stdio.h>

__global__ void mykernel()

{
// Declare shared variable with modifier __shared__.
__shared__ int x;
int tid = threadIdx.x;

x = 17;

// Synchronize all threads of this block.
__syncthreads();

// Thread O writes shared variable.
if(tid == 0) x = 42;

// Synchronize all threads of this block.
__syncthreads();

// Thread 1 reads shared variable.
if (tid == 1) printf("thread 1 reads shared variable: %d\n",x);
}

int main()

{
// Launch kernel with 1 block and 2 threads.
mykernel<<<1l, 2>>>();
cudaDeviceSynchronize() ;
return O;

In order to avoid a race condition, the two threads have to synchronize to make

9 SHARED MEMORY AND SYNCHRONIZATION 24

sure, that x was written by thread 0 before it is read by thread 1. The function
syncthreads () synchronizes all threads within a block.

9.1 Race Conditions

Without synchronization, the behavior of a program can be undefined. The following
example shows a race condition. Two threads use a shared variable x. Both threads
write their id to x and as the two threads run in parallel, it is undefined whether the
value of x is 0 or 1 afterwards. Next, both threads read x and compare its value to
their thread id. One thread detects that the value of x was overwritten by the other,
but it is undefined which one. If x would have been declared without __shared__,
each thread would have its own copy of x and none would overwrite the value of the
other. The modifier volatile is necessary to prevent the compiler from optimizing x
away.

#include <stdio.h>

__global__ void race()
{

volatile __shared__ int x;
int tid = threadIdx.x;

// Threads write shared variable at the same time.
// The value of x is afterwards undefined (either 0 or 1).
x = tid;

if(x != tid) printf("shared variable was modified by other thread!\n");
}

int main()

{
// Launch kernel with 1 block and 2 threads.
race<<<1l, 2>>>();
cudaDeviceSynchronize() ;

}

9.2 Dynamic Shared Memory

Shared memory can be allocated dynamically at runtime. This is necesary when the
size of an array is not fixed at compile time. The amount of shared memory in bytes
is given as the third parameter after grid- and blocksize when the kernel is launched:

mykernel<<<gridsize, blocksize, sharedmemorysize>>>

This means that sharedmemorysize bytes are allocated in the shared memory of an
SM as soon as a block running mykernel is launched there. If not enough memory is
free, the block can not be started.

The kernel accesses this shared memory by declaring a local variable for an array with
modifier extern __shared__:

extern __shared__ int sharedmem[];

9 SHARED MEMORY AND SYNCHRONIZATION 25

The value of sharedmen is the starting address of the shared memory block with size
sharedmemorysize.

It makes no sense to declare two variables with extern __shared__ because they

would point to the same memory block. If you want more than one shared array, you
have to split it up explicitly, e.g.

int* blocka sharedmem;
int* blockb = sharedmem + 10;

If you need shared arrays with different types, you have to cast pointers and take
alignment into account. This means that 16/32/64 bit types can only be stored under
addresses which are a multiple of 2/4/8.

In the following example an array with random single digit integers is generated. The
threads first copy it to shared memory and then apply a median filter. The main
reason for using shared memory instead of global memory is faster access. Another
important difference is that global memory is shared among all threads in the grid,
whereas shared memory is shared only among the threads in a block.

#include <stdio.h>
#include <unistd.h>
#include <time.h>

__global__ void median(int* arraydevice, int length)

{
// sharedmem points to a memoryblock shared by all threads of the block.
extern __shared__ int sharedmem[];

int nthreads = blockDim.x;
int tid = threadldx.x;
int i,a,b,c,tmp;

// Copy arraydevice to sharedmem and synchronize.
for(i=tid; i<length; i+=nthreads) sharedmem[i] = arraydevicel[il;
__syncthreads();

// Parallel median.
for(i=tid+1; i<length-1; i+=nthreads)

{
a = sharedmem[i-1];
b = sharedmem[i];
¢ = sharedmem[i+1];

if(a > b) { tmp=a; a=b; b=tmp; }
if(a > ¢) c=a;
if(b > ¢) b=c;

arraydevice[i] = b;
}
}

int main()
{

int *arrayhost, *arraydevice;

9 SHARED MEMORY AND SYNCHRONIZATION 26

int length = 10;

int nthreads = 3;

int size = lengthx*sizeof (int);
int i;

arrayhost = (int*)malloc(size);
cudaMalloc (&arraydevice,size);

srand ((unsigned int)clock());
for(i=0; i<length; i++)
arrayhost[i] = (int) (10.0*(float)rand() / (float)RAND_MAX);

printf("array before filter\n");
for(i=0; i<length; i++) printf("%d ",arrayhost[i]);

// Launch kernel with size bytes shared memory in each block.
cudaMemcpy (arraydevice, arrayhost, size, cudaMemcpyHostToDevice);
median<<<1, nthreads, size>>>(arraydevice,length);
cudaDeviceSynchronize() ;

cudaMemcpy (arrayhost, arraydevice, size, cudaMemcpyDeviceToHost);

printf("\narray after filter\n");
for(int i=0; i<length; i++) printf("%d ",arrayhost[i]);
printf ("\n");

return O;

As mentioned before, shared memory and L1 cache use a common physical memory
resource. As the size of the shared memory is not fixed at compile time, it has to be
specified which part of this memory shall be used as shared memory. The function

cudaFuncSetAttribute

(
mykernel,
cudaFuncAttributePreferredSharedMemoryCarveout,
50%1024

);

specifies that 50kB of shared memory /L1 cache should be dedicated for shared memory
when running mykernel.

The amount of dynamic shared memory a kernel may use per block is limited (usually
48kB by default). This limit can be raised with

cudaFuncSetAttribute

(
mykernel,
cudaFuncAttributeMaxDynamicSharedMemorySize,
501024

)5

Now mykernel may use up to 50kB dynamic shared memory per block.

9 SHARED MEMORY AND SYNCHRONIZATION 27

9.3 Memory Banks

Shared memory is organized in 32 memory banks. This means that successive word
addresses point to successive banks modulo 32. In many cases the 32 threads of a warp
access successive words such that each thread addresses a different memory bank. This
is a very desirable situation because memory accesses are very fast. A bank conflict
arises when two threads in a warp access the same bank. In this case the memory
accesses have to be serialized which causes delay. An exception is when several threads
of a warp read the same address in the same bank. In this case the value is read only
once and broadcast without delay.

10 REGISTERS 28

10 Registers

Registers are the fastest kind of memory. Local variables of a kernel are usually stored
there. If there are not enough physical registers available, the variables are spilled out
to global memory. This should be avoided because global memory is very slow.

A typical SM has 64K 32 bit registers in total. A single thread may use up to 255
registers. If a thread uses many registers, the number of threads which can run simul-
taneously on an SM is small, which leads to low occupancy (active blocks per SM). So
there is a trade off between register usage and occupancy.

The number of registers which are assigned to a thread and register spilling is deter-
mined by the compiler. Register usage and spilling is reported for each kernel with

nvcc -Xptxas -v myprogram.cu

The runtime of programs can be improved significantly, if registers are used as cache
to reduce memory accesses. You can guide the compiler to use many registers per
thread and accept low occupancy with

__launch_bounds__(ThreadsPerBlock, BlocksPerSM)

The value of ThreadsPerBlock is the blocksize you are using. If BlocksPerSM is 1, you
tell the compiler that it’s fine if only one block per SM is active and thereby allowing
him to assign more registers to a thread.

11 CASE STUDY CONVOLUTION 29

11 Case Study Convolution

11.1 Mathematical Background

The discrete convolution h of a signal f with an impulse response g is defined by

he = Z fo—mgm.
Assume f and g have a finite length F' and G with G much smaller than F'. Then
fo = 0 forlg|0,F—1]
g = 0 forlg[0,G—-1]

and

G—-1
hZ = Z fl—mgm~
m=0

The length of h is '+ G — 1 meaning
he = 0 forl¢g[0,F+G—2].
If f and g are stored in arrays and f¢—mgm is accumulated for m =0,...,G—1ina
loop, a case distinction is needed when accessing f¢—., because
e {—m <0 if £ is small am m is big
e {—m>F —1if £is big and m is small.
Case distinctions have a very negative performance impact on SIMD hardware. There-

fore it is advantageous to extend f by inserting G — 1 zeros at the beginning and at
the end.

If we assume that this has been done in advance, we merely have to compute the values
G-1
he = Z fa-140-mGm, forl=0,....,F -G
m=0

and no case distinction is necessary in the summation loop.

In order to compute h efficiently on a GPU, the following straight forward approach
was taken. Let n be the total number of threads in the system, which is the product
of the gridsize and the blocksize. The threads are enumerated consecutively within
each block. The i-th thread computes the values for

hi, hprm hi+2n7 e

This scheme seems to be reasonable because adjacent threads are grouped in a warp.
Therefore threads in a warp access in each iteration the same component of g and
adjacent components of f, thus providing good memory locality.

11.2 Hardware

The GPU is a Nvidia Geforce RTX 4060 with 28 SMs. Each SM has 128 cores and 4
warp schedulers. The GPU has 8GB global (off chip) memory, 24MB L2 cache for all
SMs together and 100kB L1 cache per SM. Further it has 64kB constant memory for all
SMs together and 8kB constant memory cache per SM. In order to obtain reproducible
results, the SM clock is locked at 2400MHz and the memory clock at 8250MHz.

11 CASE STUDY CONVOLUTION 30

11.3 Experiments

In the following experiment we chose F' = 2** and G = 512 such that
F—G+1=28388097

values of h have to be computed, which is is an upper bound for the number of threads
we should start. The length of f is 190 seconds at 44.1kHz sampling rate.

Experiments with a single SM

First, we start only a single block with up to 1024 threads, which means that only a
single SM is used. In order to obtain a measure for speedup, we divide the computing
time with a single thread by the time with n threads.

The time for memory transfer between host and device is not measured and negligible
compared to the computing time. As there are 128 cores in an SM one would expect
that the speedup will not exceed this limit.

On the horizontal axis in the following graph is the blocksize (number of threads)
ranging from 1 to 1024 in logarithmic scale, on the vertical axis is the speedup.

128

0} } 11128} } }2}56} } }3}84} } }SZ}LZ} } }6210} } }76158} } }8é6} } 5.624

The line with bullets is the straight forward implementation.

e The computig time with a single core was 17 433ms.

e The minimum computing time 224ms was achieved with 1024 threads, which
corresponds to a speedup of 77.8.

o Using more than 128 threads gives no significant improvement which is expected
as there are only 128 cores.

e The optimal speedup falls short behind 128 which indicates that there must be
some bottleneck.

e Further we see that best results are achieved if the number of threads is a
multiple of 32 such that there are no empty lanes in warps.

A straight forward improvement is to use fast, constant memory for the pulse response
g instead of slow, global memory. The constant cache on each SM is large enough to
hold g. The corresponding results are plotted with the boxed line.

e The computing time with a single core was 22438ms and is surprisingly longer
than without constant memory.

11 CASE STUDY CONVOLUTION 31

o However, the minimum computing time dropped to only 120ms with 1024 threads.
This is a speedup of 187, which is far above the number of 128 cores. The reason
is “latency hiding”. While one thread has to wait for memory, another thread
can use the ALU meanwhile because thread switching costs nothing on GPUs.
It worked in our experiment when there were more active threads than cores.
Therefore it makes perfectly sense to have many active threads.

e By moving g to constant memory, latency for half of the memory accesses was
reduced. As this reduced computing time significantly from 224ms to 120ms,
we can conclude that memory latency is the real bottleneck.

Experiments with the entire GPU

According to the literature and our experiments, the number of threads per block
should be a multiple of 32 and somewhere between 128 and 512. Provided that suffi-
ciently many blocks are started, computing time does not change significantly as long
as the number of threads per block is in this range. We therefore fixed the number of
threads per block to 512 and carried out experiments with different numbers of blocks.
If the total number of threads (grisize x blocksize) is equal to the length of h, each
thread computes only a single value of h. The number of blocks should therefore be
at most (F — G +1)/512 < 16 384.

As a reference for the speedup we used the computing time with one core of an AMD
Ryzen 7 7700 with 3GHz clock frequency, which is around 367ms with single precision
floating point arithmetic.

75!

250

1 4 24 43 256 1024 4096 16384

Each SM gets the same load if the number of blocks is an integer multiple of the
number of SMs. This explains the peaks at 24,48, 72,.... The reason why computing
time with 25 blocks is significantly higher than with 24 blocks is that a thread block
always runs on the same SM. This is a key difference to multiprocessor systems, where
threads are rescheduled preemptively to any arbitrary, available CPU. Such context
switches are expensive because they involve cache coherence protocols and potentially
cache pollution.

With the 25 blocks configuration, 23 SMs are each assigned one block, while the final
SM is given two. In a worst-case scenario where each block consumes an entire SM’s
resources, the two blocks on the last SM are executed sequentially. This leads to “tail-
end inefficiency”, as the other 23 SMs remain idle while the final SM completes its
second block.

The load is distributed equally among the SMs as well if the number of blocks is very
large. The graph shows that the overhead for a large number of blocks is negligible

11 CASE STUDY CONVOLUTION 32

and each thread computes only a single value of h. The minimum computing time is
=~ 5ms which gives a speedup over the CPU of 73.4 and a speedup over a single core
of the GPU of

Summarizing, we obtain the following results:

| Gridsize/Blocksize | Time [ms] | Speedup over CPU

One Core 1/1 22438 0.016
One SM 1/1024 120 3.06
GPU 16 384/512 5 73.4

One should mention that only one of the eight cores of the CPU was used and time for
data transfer between CPU and GPU (5.1ms for f, g and h in total) was neglected. It
is also worth noting that such high speedups can only be achieved with single precision
floating point arithmetic. Double precision is slower by factor 32 on the GPU, but
only by factor 2 on the CPU.

11.4 Optimization

In the simplest version each thread computes only a single element of h. The relevant
part of the code for the computation of h; looks as follows:

sum = 0.0;

k = i+ng-1;

for(j=0; j<ng; j++)

{
sum += f[k] * g[jl;
--k;

}

h[i] = sum;

In each iteration of the j-loop, two memory accesses are needed for one multiply-add
operation. Therefore most of the computing time is wasted waiting for memory.

A better approach is to assign the computation of x consecutive values of h to each
thread. So, the i-th thread now computes values

hi,hi+1,h@+27...,hi+z,1.

for ¢ = 0,z,2z,3z,.... The important point is that the values are not computed
sequentially but interleaved:

11 CASE STUDY CONVOLUTION 33

for(m=0; m<x; m++) sum[m] = 0.0;

k = i+ng-1;

for(j=0; j<ng; j++)

{
for(m=0; m<x; m++) sum[m] += f[k+ml*g[j]l;
__k;

}

for(m=0; m<x; m++) h[i+m] = sum[m];

At a first glance, there seems to be no benefit. However, after the thread has loaded a
value of f from memory, it can keep it in a register and use it for the computation of
x values of h! This means only two memory accesses for z multiply-add operations.

However, there is a problem: Keeping this “sliding window” of f in registers requires
that the registers are shifted in each iteration. A new value of f is loaded, and an
old value of f can be dropped. This costs z — 1 register to register copy operations
in each iteration. Now, let us unroll the entire j-loop, meaning that separate code
is generated for each iteration using #pragma unroll. This means that the compiler
produces code which takes the “right” registers in each iteration and avoids the register
copy operations entirely. The code will be the same in every z-th iteration of the j-
loop. Of course a diligent programmer can do this as well (or better write a programm
which produces that code).

This modification reduces execution time significantly from 5ms to only 0.83ms and
shows, that confirms that so far most of the time was lost waiting for memory.

The total number of multiply-add operations for the convolution with F = 2% and
G = 512 is roughly

28 x 512 = 232

This makes
232 x 2 FLOP
0.83ms

The theoretical peak floating point performance of the RTX 4060 at 2.4GHz clock
frequency with 24 SMs and 128 cores per SM is

10.35 TFLOP/s

9
M x 24 x 128 x 2 FLOP = 14.7 TFLOP/s

provided that one addition and one multiplication are executed in each cycle. This
means that the optimized version comes rather close to the theoretical limit.

The speedup over the CPU is now 442 provided the time for memory transfer between
CPU and GPU is not taken into account.

11.5 Further Considerations on Efficiency

A well known reason for delays are “bubbles” in the arithmetic and instruction pipeline.
For example, there is a data dependency in the summation variable when computing a
dot product. Fortunately the ALUs in modern GPUs use dedicated hardware for “data
forwarding”, such that dot products can be computed without stalling the pipeline.

11 CASE STUDY CONVOLUTION 34

Branch operations, which occur in each iteration of a loop, are a problem for instruction
pipelines. An optimizing compiler like nvcc applies all kinds of tricks like loop unrolling
and branch prediction to cope with this. Whenever possible one should make sure that
the length of inner loops is a compile time constant because this makes loop unrolling
easier.

12 STREAMS 35

12 Streams

A CUDA stream is a sequence of GPU operations (kernel launches, memory transfers,
events) that are executed sequentially in the order they are issued by the host. By
default, all operations are put into Stream 0. When the host writes an operation to
a stream, it is not blocked. As an example see Section 6.1 where CUDA events were
added to the default stream.

The real power of streams comes when you use multiple streams. When you issue
operations to different streams, they can be executed concurrently as long as there
are no data dependencies between them. For example, you can run a kernel on one
part of the GPU while simultaneously transferring data from the host to the device
in another part, provided that these two operations don’t interfer with each other.
This is crucial for overlapping computation and data transfer, which can significantly
improve overall performance, see Section 12.1

You can execute kernels sequentially by writing them to the same stream or in parallel
by using a different stream for each kernel.

Streams are independent. To ensure an operation in one stream doesn’t start before
an operation in another stream finishes, you must explicitly synchronize them. This
is done using functions like cudaStreamSynchronize() or cudaEventRecord() and
cudaEventSynchronize().

In the following example two streams are used such that kernel 3 runs parallel to kernel
1 and 2, which are executed sequentially.

#include <stdio.h>

__global__ void kernell(){ }
__global__ void kernel2(){ }
__global__ void kernel3(){ }

int main()

{
cudaStream_t streamA, streamB;
cudaStreamCreate (&streaml) ;
cudaStreamCreate (&streamB) ;

// Launch kernell and kernel2 in streamA.
kernell1<<<32, 256, 0, streamA>>>();
kernel2<<<32, 256, 0, streamA>>>();

// Launch kernel3 in streamB.
kernel3<<<32, 256, 0, streamB>>>();

// Wait for both streams to finish
cudaStreamSynchronize (streaml) ;

cudaStreamSynchronize (streamB) ;

cudaStreamDestroy(streaml) ;
cudaStreamDestroy (streamB) ;

return O;

12 STREAMS 36

12.1 Asynchronous Memory Transfer

Memory transfers can also be added to a stream. If you want to run several streams
in parallel, you have to use asynchronous memory transfer. This means that the
host initiates the transfer but does not wait for its completion. This is achieved with
funciton cudaMemcypAsync. In order to avoid that the host operating system swaps
out the memory pages before the transfer is complete, you have to allocate memory
on the host with cudaMallocHost.

int main()

{
cudaStream_t stream;
cudaStreamCreate (&stream) ;
float * arrayhost, *arraydevice;
int length = 1024;
int size = lengthxsizeof (float)M

cudaMallocHost (&arrayhost,size); // Memory is not swapped out by host 0S.
cudaMalloc(&arraydevice,size) ;

// Add memory transfers and kernel to stream without blocking host.
cudaMemcpyAsync (arraydevice,arrayhost,size, cudaMemcypHostToDevice, stream) ;
kernel<<<32,256,0,stream>>>(arraydevice,length) ;

cudaMemcpyAsync (arrayhost,arraydevice,size, cudaMemcypDeviceToHost,stream) ;

// Host waits for stream to finish.
cudaStreamSynchronize (stream) ;

13 TENSOR CORES FOR MATRIX MULTIPLICATION 37

13 Tensor Cores for Matrix Multiplication

Modern GPUs have several tensor cores per SM. A tensor core is a hardware matrix-
multiply unit. It operates per warp on fragments of a matrix called tiles. These are
usually 16 x 16 submatrices.

13.1 Matrix Tiles

The straight forward way to multiply two matrices A € R™** and B € R**" in CUDA
is that each thread computes one component of the product C € R™*™ according to
the “row by column” rule:

k-1

Gj = E aiebej

£=0

Every multiply-add operation in this loop is a scalar operation, meaning one multiply-
add instruction per cycle per thread.

The problem with this approach is that there are way too many memory accesses
because the components of A and B are loaded repeatedly by different threads. For
each component c¢;; of C' there are 2k memory accesses to load a;; and by; for ¢ =
0,...,k—1. As C has mn components, the total amount of memory accesses including
storage of C' is

mn(l + 2k).

A better way is to split A, B, C into smaller tiles, e.g. 16 x 16 submatrices. If m,n, k
are not multiples of 16, the matrices have to be zero padded. The i, j-th tile of A has
components

a16i,165 et Q16i,16j+15
Aij =
(16i4+15,165 --- A16i+15,16+15
and correspondingly for B and C. The tile C;; is now obtained by

(k—1)/16
Cij = Z AieBej
=0

where the product A;¢By; is a 16 x 16 matrix multiplication.

n
k n

=
.|ooo - | B8] Q
A) Y

13 TENSOR CORES FOR MATRIX MULTIPLICATION 38

Assuming that a tile is loaded only once during this multiplication we need 2 x 162
memory operations to load A;; and Bej. The computation of C;; amounts to

2><162><% = 32

memory operations. As C consists of mn,/16 tiles, the total amount including storage
of C'is

mn
mn = 1+
32k e T M mn(l+ k/8)

memory accesses, which is roughly factor 16 less than with the straight forward
approach, assuming k is large.

The crucial assumption was that the tiles A;, and By; are loaded only once for the
computation of the tile product A;¢Be;. There are two options:
o Store the tiles in shared memory. This costs repeated memory accesses but at
least they are faster.
o Store the tiles in registers of a thread. This means no parallelism during com-
putation of a tile product.
Tensor cores combine the advantages of both options: They store the tiles in registers

but use an entire warp of threads to compute the tile product in parallel.

What is the optimal tile size given that fast memory is limited? In the general case
we may use m’ x n’ tiles of C' and correspondingly m’ x k' tiles of A and k' x n' tiles
of C. Loading a pair of tiles from A and B takes

m xk +k xn = K(@m +n)
memory accesses. The computation of a tile of C' costs
E'(m' +n')

xXg = k(m' +n')

accesses. As C' consists of mn/(m'n’) tiles, the total amount including storage of C is

’ ’
E(m' +n") LI — mn(l—l—km—’_n>

m'n’ m/'n’

memory accesses. The result is independent of k', which means that k' = 1 is the best
choice to reduce the amount of fast memory needed to store tiles of A;y and By;. In
this case Ai¢By; is a dyadic product of a column vector and a row vector. For a given
tile area m'n’, which corresponds to the required amount of fast memory for a tile of
C, a squared shape with m’ = n’ minimizes the number of memory operations.

13.2 Tensor Cores

A tensor core is a special functional unit inside an SM for multiplying and accumulating
small (e.g. 16 x 16) matrix tiles. It is efficient because the tiles are stored in registers
and the product is computed with a high degree of parallelism with a single PTX
instruction.

Computation time is reduced even more at the cost of accuracy. A floating point
number uses a certain number of bits for the mantissa. The exact product of two such
numbers would require twice the number of bits such that after rounding to the original

13 TENSOR CORES FOR MATRIX MULTIPLICATION 39

format, half of them are lost. This is a waste which suggests that not much accuracy
is lost if only the most significant half of mantissa bits are actually multiplied and
no rounding is necessary. Tensor cores provide therefore less accurate floating point
formats for the argument matrices A and B:

e half precision FP16: 10 bit mantissa, 5 bit exponent,
o tensor float TF32: 10 bit mantissa, 8 bit exponent or
¢ brain float BF'16: 7 bit mantissa, 8 bit exponent,

The output is accumulated in
o single precision FP32: 23 bit mantissa, 8 bit exponent.

In all cases one bit is used for the sign.

A matrix multiply add (MMA) operation with a tensor core happens per warp: All
32 threads collaborate to load a tile of A and B into the registers of a tensor core. If
the warp issues the MMA instruction, the hardware computes

D = AB+C

for an entire tile, which means order of 16%> FMA instructions in just a few cycles.

There is a C++ API for loading tiles from memory into registers and executing the
matrix multiply add operation on a tensor core called WMMA (Warp Matrix Multiply
and Accumulate) [9], which is described in Section 13.3. If you just want to solve linear
algebra problems using GPU’s and are not interested in how tensor cores work, it is
easier to use high level libraries like cuBLAS and cuBLASLt, which are described in
Section 14 and 15.

13.3 Warp Matrix Multiply and Accumulate (WMMA)

WMMA is a C++ API enclosed in a namespace which can be used with
using namespace nvcuda::wmma;

If you want to multiply two matrix tiless A € R™** and B € R*¥*™ and accumulate the
result in C' € R™*™, you first have to declare the tile sizes and the types of the input
matrices A and B and the accumulator. This is done with

fragment<matrix_a, Mtile, Ntile, Ktile, half, row_major> a_frag;
fragment<matrix_b, Mtile, Ntile, Ktile, half, col_major> b_frag;
fragment<accumulator, Mtile, Ntile, Ktile, float> c_frag;

The values of Mtile, Ntile and Ktile are the matrix sizes m,n,k. Only certain
combinations for (m,n, k) are supported like e.g. (16,16, 16), (32,8,16) or (8,32,16).
Note that these values are not passed as arguments to a constructor of a_frag or
b_frag but as parameters of a C++ template. This means that in general a_frag,
b_frag and c_frag have different types. half and float are the types of A, B and
C. The tensor core is instructed to store the fragments in its internal registers in row
major format for A and column major format for B. According to Nvidia this gives
best performance.

The accumulator matrix is initialized with zero, which is done with

13 TENSOR CORES FOR MATRIX MULTIPLICATION 40

f£ill_fragment(c_frag, 0.0f);
Next, A and B are loaded with

load_matrix_sync(a_frag, a, Astride, mem_row_major);
load_matrix_sync(b_frag, b, Bstride, mem_row_major);

Here a and b are the addresses of a fragment of the matrices and have type half*.
Usually the tiles are fragments of larger matrices. In this example both matrices are
stored row major, which means that elements of a row are stored consecutively in an
array. This means that when loading B the tile will be transposed. It is therefore
recommended to store B column major whenever possible. The value of Astride and
Bstride is the number of rows of the large matrices, of which A and B are fragments.
These values are needed such that the system can calculate the start addresses of the
rows of the fragments. (If column major format is used, the strides are the number of
columns.)

The actual matrix multiply and accumulate operation is done with
mma_sync(c_frag, a_frag, b_frag, c_frag);

Note that the added matrix is the same as the accumulator in this example.

Finally, the accumulator is written to memory with
store_matrix_sync(c, c_frag, Cstride, mem_row_major);

Again we have to provide the format (in this case row major), a pointer c to the
position where C' is stored of type float* and the stride of the larger matrix of which
C is a fragment.

14 CUBLAS LIBRARY FOR LINEAR ALGEBRA 41

14 cuBLAS Library for Linear Algebra

The cuBLAS library [1] is an implementation of linear algebra functions like matrix
multiplication using CUDA. It gives high level access to the computational resources
of Nvidia GPUs including Tensor Cores.

14.1 Example: Matrix Multiplication with cuBLAS

A simple example for computing
C +— aAB+ pC

where A € R™** B € RF*™ and C € R™*™ is as follows:

#include <stdio.h>
#include <cublas_v2.h>
#include <cuda_fp16.h>

#define M 16
#define N 16
#define K 16

int main()

{
// Host memory
float Ahost[M*K], Bhost[K*N], Chost[M*N];
float alpha = 1.0f, beta = 0.0f;

// Initialize input matrices with ones.

for (int i=0; i<M*K; i++) Ahost[i] = 1.0f;
for (int i=0; i<K#*N; i++) Bhost[i] 1.0f;
for (int i=0; i<M#*N; i++) Chost[il 1.0f;

// Device memory

float *Adevice, *Bdevice, *Cdevice;

cudaMalloc(&Adevice, M*K*sizeof (float)); // M rows, K cols
cudaMalloc(&Bdevice, K*N*sizeof (float)); // K rows, N cols
cudaMalloc(&Cdevice, M*N*sizeof (float)); // M rows, N cols

// Copy matrices to device.

cudaMemcpy (Adevice, Ahost, M*xKxsizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy (Bdevice, Bhost, K*N*sizeof (float), cudaMemcpyHostToDevice);
cudaMemcpy (Cdevice, Chost, M*N*sizeof (float), cudaMemcpyHostToDevice);

// cuBLAS handle
cublasHandle_t handle;
cublasCreate(&handle) ;

// Enable Tensor Core acceleration (TF32 in this case)
cublasSetMathMode (handle, CUBLAS_TF32_TENSOR_OP_MATH) ;

// Compute C = alpha * A * B + beta * C
cublasSgemm

14 CUBLAS LIBRARY FOR LINEAR ALGEBRA 42

(
handle, CUBLAS_OP_N, CUBLAS_OP_N,
M, N, K,
&alpha,
Adevice, M, // A is MxK, M rows.
Bdevice, K, // B is KxN, K rows.
&beta,
Cdevice, M // C is MxN, M rows.
);

cudaDeviceSynchronize() ;

// Copy result to host.

cudaMemcpy (Chost, Cdevice, M*N*sizeof (float), cudaMemcpyDeviceToHost);
printf ("cuBLAS result C[0,0] = %f\n",Chost[0]);

// Cleanup

cublasDestroy (handle) ;

cudaFree(Adevice); cudaFree(Bdevice); cudaFree(Cdevice);

return O;

The cuBLAS library has to be linked with

nvcc matrix.cu -lcublas
nvcc matrix.cu cublas.lib

The second version is for Windows. The cublas library under windows is in
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\vXX.X\1ib\x64

The meaning of the instructions is as follows: First, a handle to cuBLAS has to be
created with

cublasHandle_t handle;
cublasCreate(&handle) ;

With function
cublasSetMathMode (handle, mode) ;

you can select the floating point precision. The most important modes are as

e CUBLAS_DEFAULT_MATH. Highest performance, uses Tensor Cores.

e CUBLAS_PEDANTIC_MATH. Uses strict IEEE754 precision for the given floating
point types. Tensor Cores are not used because they compute internally with
lower precision.

e CUBLAS_TF32_TENSOR_OP_MATH. Enables acceleration of single-precision routines
using TF32 floating point format in Tensor Cores.

14 CUBLAS LIBRARY FOR LINEAR ALGEBRA 43

The actual matrix multiplication is done with

cublasStatus_t cublasSgemm
(
cublasHandle_t handle,
cublasOperation_t transA, cublasOperation_t transB,
int m, int n, int k,
const float *alpha,
const float *A, int nrowsA,
const float *B, int nrowsB,
const float *beta,
float *C, int nrowsC

With paramenters transA and transB you can transpose A and B prior to the mul-
tiplication. Value CUBLAS_OP_N means do not transpose, value CUBLAS_OP_T means
transpose. The parameters can also be used if one or both matrices have been stored
row-major and need to be reorganized as column-major without actually doing the
transposition.

A matrix is always stored column-major as one-dimensional array in cuBLAS, which
means that the components of a column are contiguously in memory. An m X n matrix

C11 Cln
C =
Cm1 Cmn
is storead as
[011,621, «.e.yCm1, C12,C22,...,Cm2, ... Cln,C2n,.. .,Cmn] .

The “leading dimension” of a matrix stored column-major is the number of its rows
(its height) or the length of a column. It can also be defined as the stride between
successive columns in memory.

The parameters nrowsA, nrowsB, nrowsC are the leading dimensions of the arrays A,
B and C. In the above example we have A € R™** B € R**™ and C € R™*" and
therefore the leading dimensions are m, k, m respectively.

Every cuBLAS function returns an error code of type
cublasStatus_t

If CUBLAS_STATUS_SUCCESS is returned, the function was executed with no error. The
meaning of other error codes is described in [1].

14.2 Parallel Streams with cuBLAS

If you want to execute two cuBLAS functions in parallel, you can use streams in the
same way as with CUDA: Generate two streams and two cuBLAS handles, which are
associated with the streams as follows:

cudaStream_t streaml, stream?2;
cublasHandle_t handlel, handle2;

14 CUBLAS LIBRARY FOR LINEAR ALGEBRA 44

// Generate two cuBLAS handles and two streams.
cudaStreamCreate (&streaml) ;
cudaStreamCreate (&stream?2) ;

cublasCreate (&handlel);
cublasCreate(&handle?2) ;

// Associate handlel with streaml and handle2 with stream 2.
cublasSetStream(handlel, streaml);
cublasSetStream(handle2, stream?2);

// Execute cuBLAS functions with different handles.

// Wait for termination.
cudaStreamSynchronize (streaml) ;
cudaStreamSynchronize (stream2) ;

When a cuBLAS function is called with handlel or handle2, it is placed on the corre-
sponding stream1 or stream2. Functions in different streams are executed in parallel,
functions in the same stream sequentially.

15 CUBLASLT LIBRARY FOR LINEAR ALGEBRA 45

15 cuBLASLt Library for Linear Algebra

The cuBLASLt (cuBLAS lightweight) library is the successor of cuBLAS. It supports
more floating point types and is optimized to use Tensor Cores efficiently. While
cuBLAS is stable and well established, cuBLASLt is the recommended path forward.

15.1 Example: Matrix Multiplication with cuBLASLt

A simple example for computing
D + aAB+ 8C

where A € R™** B € RF*™ and C € R™*™ is as follows:

#include <cublasLt.h>
#include <stdio.h>

#define N 17
#define M 26
#define K 19

int main()

{
// Host memory
float Ahost[M*K], Bhost[K*N], Chost[M*N], Dhost [M*N];
float alpha = 1.0f, beta = 0.0f;

// Initialize input matrices with ones.

for (int i=0; i<M#*K; i++) Ahost[i] = 1.0f;
for (int i=0; i<K*N; i++) Bhost[i] = 1.0f;
for (int i=0; i<M#*N; i++) Chost[i] = 1.0f;

// Device memory

float *Adevice, *Bdevice, *Cdevice, *Ddevice;
cudaMalloc(&Adevice, M*K*sizeof (float)); // M rows, K cols
cudaMalloc(&Bdevice, K*N*sizeof (float)); // K rows, N cols
cudaMalloc(&Cdevice, M*N*sizeof (float)); // M rows, N cols
cudaMalloc(&Ddevice, M*N*sizeof(float)); // M rows, N cols

// Copy matrices to device.

cudaMemcpy (Adevice, Ahost, MxKxsizeof (float), cudaMemcpyHostToDevice);
cudaMemcpy (Bdevice, Bhost, K*N*sizeof (float), cudaMemcpyHostToDevice);
cudaMemcpy (Cdevice, Chost, M*N*sizeof (float), cudaMemcpyHostToDevice) ;

// Create cuBLASLt handle.
cublasLtHandle_t 1ltHandle;
cublasLtCreate(&1tHandle);

// Operation descriptor: FP32 compute, FP32 scale
cublasLtMatmulDesc_t operationDesc;
cublasLtMatmulDescCreate

(

&operationDesc,

15 CUBLASLT LIBRARY FOR LINEAR ALGEBRA 46

CUBLAS_COMPUTE_32F_FAST_TF32, // Precision for intermediate results.
CUDA_R_32F // Precision for alpha and beta.
);

// Matrix layouts, column-major.

cublasLtMatrixLayout_t layoutA, layoutB, layoutC, layoutD;
cublasLtMatrixLayoutCreate (&layoutA, CUDA_R_32F, M, K, M);
cublasLtMatrixLayoutCreate(&layoutB, CUDA_R_32F, K, N, K);
cublasLtMatrixLayoutCreate (&layoutC, CUDA_R_32F, M, N, M);
cublasLtMatrixLayoutCreate(&layoutD, CUDA_R_32F, M, N, M);

// Compute D = alpha*A * B + betaxC
cublasLtMatmul
(
1tHandle,
operationDesc, // Operation descriptor.
&alpha,
Adevice, layoutA, // Matrix with its layout.
Bdevice, layoutB,
&beta,
Cdevice, layoutC,
Ddevice, layoutD,
NULL, nullptr, O, // Optimized algorithm.
0 // Stream.
)5

cudaDeviceSynchronize() ;

// Copy result.
cudaMemcpy (Dhost, Ddevice, M#N*sizeof(float), cudaMemcpyDeviceToHost) ;
printf ("cuBLASLt result D[0,0] = %f\n",Dhost[0]);

// Cleanup

cublasLtMatmulDescDestroy (operationDesc) ;
cublasLtMatrixLayoutDestroy(layoutl) ;
cublasLtMatrixLayoutDestroy(layoutB) ;
cublasLtMatrixLayoutDestroy(layoutC) ;
cublasLtMatrixLayoutDestroy(layoutD) ;
cublasLtDestroy(1tHandle) ;

cudaFree(Adevice); cudaFree(Bdevice); cudaFree(Cdevice); cudaFree(Ddevice);
return O;

Compile with
nvcc matrix.cu -lcublasLt

Compared to the matrix multiplication example with cuBLAS in Section 14.1, there
are some differences. First, the handle to the library is now created with

cublasLtHandle_t 1tHandle;
cublasLtCreate(&1tHandle);

In cuBLASLt operation descriptors are used to set parameters for an operation, in

15 CUBLASLT LIBRARY FOR LINEAR ALGEBRA 47

this case matrix multiplication. In the following example, the floating point formats
for intermediate results and for a and /3 are set.

cublasLtMatmulDesc_t operationDesc;
cublasLtMatmulDescCreate

(
&operationDesc,
CUBLAS_COMPUTE_32F_FAST_TF32, // Type for intermediate results.
CUDA_R_32F // Type for alpha and beta.

)5

We use CUBLAS_COMPUTE_32F_FAST_TF32 which allows to use tensor cores with single
precision (F32) input matrices and tensor float (TF32) format for intermediate results.
The type CUDA_R_32F means single precision (F32) floating point numbers for the
scalars « and 3

Next, for each matrix a layout is specified, for example

cublasLtMatrixLayout_t layoutA
cublasLtMatrixLayoutCreate (&layoutA, CUDA_R_32F, M, K, M);

The layout describes a m x k matrix with single precision floating point format. It
is stored column-major, therefore the leading dimension is equal to the number m of
rows, which is passed as the last argument.

The next operation is the actual computation of D <+ aAB + BC. This function is
declared as follows:

cublasStatus_t cublasLtMatmul

(
cublasLtHandle_t handle,
cublasLtMatmulDesc_t operationdescr,
const void *alpha,
const void *A,
cublasLtMatrixLayout_t layoutA,
const void *B,
cublasLtMatrixLayout_t layoutB,
const void *beta,
const void *C,
cublasLtMatrixLayout_t layoutC,
void *D,
cublasLtMatrixLayout_t layoutD,
const cublasLtMatmulAlgo_t *algo,
void *workspace,
size_t workspaceSizelInBytes,
cudaStream_t stream

)5

Note that the matrices are passed as void pointers. The reason is that many different
types for floating point values are provided by cuBLASLt and the actual type is given
by the layout descriptor for each matrix. The same holds for alpha and beta, whose
type is given by the operation descriptor.

If you want to overwrite C' with the result, passing the same address for C and D will
work and avoids allocating extra memory for D.

15 CUBLASLT LIBRARY FOR LINEAR ALGEBRA 48

The last argument is a CUDA stream. If two cuBLASLt functions are called with
different streams, they are executed in parallel. The value 0 as in the example above
denotes the default stream. Note that in cuBLASLt the stream is passed as an argu-
ment to the matrix multiplication function and is not associated with the handle as in
cuBLAS. Therefore no function cublasLtSetStream exists in cuBLASLt.

With argument algo an optimized algorithm for matrix multiplication can be chosen.
There are several matrix multiplication algorithms which differ in the following aspects:

e Use Tensor Cores or CUDA threads only.

e« How the matrices are decomposed into tiles, which are processed by Tensor
Cores.

o Some algorithms need additional memory for intermediate results (workspace).

e Some algorithms are non-deterministic, for example when warp-scheduling in-
fluences the order of summation.

e Some algorithms are optimized for matrices whose number of rows and colmns
differ greatly, others for near square matrices.

With function cublasLtMatmulAlgoGetHeuristic() the best algorithm can be se-
lected depending for example on the matrix shapes and selected floating point types.
If, as in the above example, a NULL pointer is passed for algo, then a default algo-
rithm based on hardware capability, matrix sizes, and data types is used. In the above
example no workspace for intermediate results is provided.

References

[

(6]
[7]

(8]

(9]
(10]

(1]

cuBLAS API Documentation. — https://docs.nvidia.com/cuda/cublas/

CUDA and Floating Point. — https://docs.nvidia.com/cuda/floating-point/
index.html#cuda-and-floating-point

Floating Point and IEEE 754 Compliance for NVIDIA GPUs. — https://docs.
nvidia.com/cuda/floating-point/index.html

Flynn’s Taxonomy. — https://en.wikipedia.org/wiki/Flynn},27s_taxonomy

GPU Programming with CUDA. — https://vstahl.4lima.de/cuda/vorlesung.
html

Parallel Thread Execution ISA. - https://docs.nvidia.com/cuda/
parallel-thread-execution/

IEEE Standard for Binary Floating-Point Arithmetic. 1985. — https://wuw.ime.
unicamp.br/~biloti/download/ieee_754-1985.pdf

IEEE Standard for Floating-Point Arithmetic. 2019. - https:
//wwu-users.cse.umn.edu/~vinals/tspot_files/phys4041/2020/IEEEJ,
20Standard20754-2019.pdf

GAUTAM, Tushar: Introduction to Tensor Cores Programming. — https:
//Omeanlsigma.com/tgemm/

NATHAN WHITEHEAD, Alex Fit-Florea: NVIDIA CUDA Compiler Driver NVCC.

— https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html

NATHAN WHITEHEAD, Alex Fit-Florea: Precision & Performance: Floating Point
and IEEE 754 Compliance for NVIDIA GPUs. — https://developer.download.
nvidia.com/assets/cuda/files/NVIDIA-CUDA-Floating-Point.pdf

49

https://docs.nvidia.com/cuda/cublas/
https://docs.nvidia.com/cuda/floating-point/index.html#cuda-and-floating-point
https://docs.nvidia.com/cuda/floating-point/index.html#cuda-and-floating-point
https://docs.nvidia.com/cuda/floating-point/index.html
https://docs.nvidia.com/cuda/floating-point/index.html
https://en.wikipedia.org/wiki/Flynn%27s_taxonomy
https://vstahl.4lima.de/cuda/vorlesung.html
https://vstahl.4lima.de/cuda/vorlesung.html
https://docs.nvidia.com/cuda/parallel-thread-execution/
https://docs.nvidia.com/cuda/parallel-thread-execution/
https://www.ime.unicamp.br/~biloti/download/ieee_754-1985.pdf
https://www.ime.unicamp.br/~biloti/download/ieee_754-1985.pdf
https://www-users.cse.umn.edu/~vinals/tspot_files/phys4041/2020/IEEE%20Standard%20754-2019.pdf
https://www-users.cse.umn.edu/~vinals/tspot_files/phys4041/2020/IEEE%20Standard%20754-2019.pdf
https://www-users.cse.umn.edu/~vinals/tspot_files/phys4041/2020/IEEE%20Standard%20754-2019.pdf
https://0mean1sigma.com/tgemm/
https://0mean1sigma.com/tgemm/
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html
https://developer.download.nvidia.com/assets/cuda/files/NVIDIA-CUDA-Floating-Point.pdf
https://developer.download.nvidia.com/assets/cuda/files/NVIDIA-CUDA-Floating-Point.pdf

Index

bank, 27
block, 11
blocksize, 11

clock64, 17

column major, 39
column-major, 43

constant memory, 9

CUDA core, 8
cudaDeviceSynchronize, 5
cudaEvent, 16
cudaEventRecord, 16, 35
cudaEventSynchronize, 16, 35
cudaFree, 6

cudaMalloc, 6
cudaMallocHost, 36
cudaMallocManaged, 5, 6
cudaMemcpy, 6
cudaMemcypAsync, 36
cudaStreamSynchronize, 35
cudaEventElapsedTime, 16

data forwarding, 33
event, 16
FMA, 13

__global__, 4, 11, 23
global memory, 8
grid, 11

gridsize, 11

IEEE 754, 13
kernel, 4, 11

L1 cache, 9

lane, 12, 30

latency hiding, 10, 31
leading dimension, 43, 47
lockstep synchronous, 12
loop unrolling, 19

memory bank, 27

nvcce, 4, 11
nvidia-smi, 14

occupancy, 28

__restrict__, 19
row major, 39

50

__shared__, 23

shared memory, 9

SM, 7

spill out, 28

stream, 16

streaming multiprocessor, 7

TB, 11
thermal throttling, 18
thread block, 11

unified memory, 9
unrolling, 19

warp, 12, 30

	1 First Steps
	1.1 How to do Experiments
	1.2 First Example
	1.3 Parallel Vector Addition

	2 Architecture of a GPU
	2.1 Processors
	2.2 Memory

	3 Kernels, Threads and Thread Blocks
	3.1 Kernels
	3.2 Thread Blocks
	3.3 Warps

	4 Floating Point Arithmetic
	5 Status of the GPU
	5.1 Command line Tool nvidia-smi
	5.2 Status at Runtime with NVML

	6 Measuring Computing Time
	6.1 CUDA Events
	6.2 Cycle Counter on GPU
	6.3 Wall-Clock on Host
	6.4 Variable Clock Frequency
	6.5 Thermal Throttling

	7 Optimization
	7.1 Compiler Flags
	7.2 Loop Unrolling
	7.3 Restricted Pointers
	7.4 Fused Multiply Add
	7.5 PTX Machine Code

	8 Constant Memory
	9 Shared Memory and Synchronization
	9.1 Race Conditions
	9.2 Dynamic Shared Memory
	9.3 Memory Banks

	10 Registers
	11 Case Study Convolution
	11.1 Mathematical Background
	11.2 Hardware
	11.3 Experiments
	11.4 Optimization
	11.5 Further Considerations on Efficiency

	12 Streams
	12.1 Asynchronous Memory Transfer

	13 Tensor Cores for Matrix Multiplication
	13.1 Matrix Tiles
	13.2 Tensor Cores
	13.3 Warp Matrix Multiply and Accumulate (WMMA)

	14 cuBLAS Library for Linear Algebra
	14.1 Example: Matrix Multiplication with cuBLAS
	14.2 Parallel Streams with cuBLAS

	15 cuBLASLt Library for Linear Algebra
	15.1 Example: Matrix Multiplication with cuBLASLt

