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Exercise 1. Let

f(t) =
{

t if 0 ≤ t ≤ 1
0 else.

Compute the Fourier Transform F (ω) of f(t).

Solution for Exercise 1.

F (ω) =
∫ 1

0
f(t)e−jωtdt

=
∫ 1

0
te−jωtdt

=
[
− t

jω
e−jωt

]1

0
−

∫ 1

0
− 1

jω
e−jωtdt

= j

ω

[
te−jωt

]1
0 + 1

jω

−1
jω

[
e−jωt

]1
0

= j

ω
e−jω + 1

ω2

(
e−jω − 1

)
=

(
j

ω
+ 1

ω2

)
e−jω − 1

ω2

= (jω + 1)e−jω − 1
ω2

Exercise 2. Let

f(t) c s F (ω)

and a ∈ R with a > 0. Show that

f(at) c s 1
a

F
(ω

a

)
.

Solution for Exercise 2.

f(at) c s ∫ ∞

−∞
f(at)e−jωtdt.

With substitution

τ = at,
dτ

dt
= a, dt = 1

a
dτ, t = 1

a
τ
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it holds that ∫ ∞

−∞
f(at)e−jωtdt =

∫ ∞

−∞
f(τ)e−jωτ/a 1

a
dτ

= 1
a

∫ ∞

−∞
f(τ)e−j(ω/a)τ dτ︸ ︷︷ ︸

F (ω/a)

= 1
a

F
(ω

a

)
.

Exercise 3. Let f ∈ R → R and

f(t) c s F (ω).

Show that

f(−t) c s F (ω).

Solution for Exercise 3.

f(−t) c s ∫ ∞

−∞
f(−t)e−jωtdt.

With substitution

u = −t,
du

dt
= −1, dt = −du

we obtain ∫ −∞

∞
f(u)ejωu(−du) =

∫ ∞

−∞
f(u)ejωudu

=
∫ ∞

−∞
f(u)e−jωudu

=
∫ ∞

−∞
f(u)e−jωudu

= F (ω).

Exercise 4. Use the frequency shift correspondence

f(t)ejω̂t c s F (ω − ω̂)

and

1 c s 2πδ(ω)

to determine the Fourier Transform of ejω̂t, cos(ω̂t) and sin(ω̂t).

Solution for Exercise 4. From the given correspondences it follows that

ejω̂t c s 2πδ(ω − ω̂)
e−jω̂t c s 2πδ(ω + ω̂).
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Using Euler’s Theorem and linearity of the Fourier Transform we obtain

cos(ω̂t) = 1
2(ejω̂t + e−jω̂t)

c s 1
2(2πδ(ω − ω̂) + 2πδ(ω + ω̂))

= π(δ(ω − ω̂) + δ(ω + ω̂))

sin(ω̂t) = 1
2j

(ejω̂t − e−jω̂t)

c s 1
2j

(2πδ(ω − ω̂) − 2πδ(ω + ω̂))

= −jπ(δ(ω − ω̂) − δ(ω + ω̂))

Exercise 5. Use the Modulation Theorem and

1 c s 2πδ(ω)

to determine the Fourier Transform of cos(t).
Use the Time Shift Theorem and

sin(t) = cos(t − π/2)

to obtain the Fourier Transform of sin(t). Simplify the result as much as
possible using the sifting property.
Use the correspondence

f(at) c s 1
|a|

F (ω/a)

and

δ(at) = 1
|a|

δ(t)

to derive the Fourier Transform of cos(ω̂t) from the Fourier Transform of
cos(t) for arbitrary ω̂ ∈ R.

Solution for Exercise 5. From

1 c s 2πδ(ω)

and

f(t) cos(ω̂t) c s 1
2(F (ω − ω̂) + F (ω + ω̂))

it follows that

cos(t) c s 1
2(2πδ(ω − 1) + 2πδ(ω + 1))

= 1
π

(δ(ω − 1) + δ(ω + 1)).

From

f(t − t̂) c s e−jωt̂F (ω)
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it follows with t̂ = π/2 that

sin(t) = cos(t − π/2)c s e−jωπ/2 1
π

(δ(ω − 1) + δ(ω + 1))

= 1
π

(e−jωπ/2δ(ω − 1) + e−jωπ/2δ(ω + 1))

= 1
π

(e−jπ/2δ(ω − 1) + ejπ/2δ(ω + 1))

= 1
π

(−jδ(ω − 1) + jδ(ω + 1))

= − j

π
(δ(ω − 1) − δ(ω + 1)).

Finally, using

f(at) c s 1
|a|

F (ω/a)

for a = ω̂ an f(t) = cos(t) we obtain

cos(ω̂t) c s 1
|ω̂|

1
π

(δ(ω/ω̂ − 1) + δ(ω/ω̂ + 1))

= 1
|ω̂|

1
π

(|ω̂|δ(ω − ω̂) + |ω̂|δ(ω + ω̂))

= 1
π

(δ(ω − ω̂) + δ(ω + ω̂)).

Exercise 6. Let ω = 2π/T and u, v ∈ Z. Compute∫ T

0
ejuωte−jvωtdt

and simplify the result as much as possible. Consider also the case u = v.

Solution for Exercise 6.

• Case u ̸= v.∫ T

0
ejuωte−jvωtdt =

∫ T

0
ej(u−v)ωtdt

= 1
j(u − v)ω [ej(u−v)ωt]T0

= 1
j(u − v)ω

(
ej(u−v)ωT − 1

)
.

With ωT = 2π this is equal to
1

j(u − v)ω

(
e2πj(u−v) − 1

)
.

As u − v ∈ Z it holds that

e2πj(u−v) = 1.

and therefore the integral is zero.
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• Case u = v. ∫ T

0
ejuωte−jvωtdt =

∫ T

0
ej(u−v)ωtdt

=
∫ T

0
1dt

= T.

Summarizing we have∫ T

0
ejuωte−jvωtdt =

{
0 if u ̸= v
T if u = v.

Exercise 7. Use the correspondences of the Fourier Transform to show that

ft̂ ∗ g = (f ∗ g)t̂

where index t̂ at a function means shifting the function by t̂, i.e.

ft̂(t) = f(t − t̂) for all t.

The proof is very short.

Solution for Exercise 7. With

f(t) c s F (ω)
g(t) c s G(ω)

ft̂(t) = f(t − t̂)c s e−jωt̂F (ω)

it holds that

(ft̂ ∗ g)(t) c s (
e−jωt̂F (ω)

)
G(ω)

= e−jωt̂F (ω)(Gω)s c (f ∗ g)(t − t̂)
= (f ∗ g)t̂(t).

Exercise 8. Use the correspondences of the Fourier Transform to show that

f− ∗ g = (f ∗ g−)−

where the raised minus sign means time reversal, i.e.

f−(t) = f(−t).

The proof is very short.

Solution for Exercise 8. With

f−(t) = f(−t)c s F (ω)
(f ∗ g)(t) = F (ω)G(ω)
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and the law of complex numbers

z1 z2 = z1z2

it holds that

(f− ∗ g)(t) c s F (ω)G(ω)

= F (ω) G(ω)

= F (ω)G(ω)s c (f ∗ g−)−(t).

Exercise 9. Let f ∈ R → R and

f−(t) = f(−t)

for all t. The autocorrelation function fA of f is defined by

fA = f ∗ f−.

• Show that

fA(0) =
∫ ∞

−∞
f(t)2dt.

• Show that from f−(t) c sF (ω) and the convolution theorem it fol-
lows that

fA(t) c s |F (ω)|2.

• The inverse Fourier Transform of |F (ω)|2 is

|F (ω)|2 s c 1
2π

∫ ∞

−∞
|F (ω)|2ejωtdω.

From this we obtain

fA(t) = 1
2π

∫ ∞

−∞
|F (ω)|2ejωtdω.

Show that in the special case t = 0 we obtain Parseval’s equation∫ ∞

−∞
f(t)2dt = 1

2π

∫ ∞

−∞
|F (ω)|2dω.

Solution for Exercise 9.

•

fA(t) =
∫ ∞

−∞
f(τ)f−(t − τ)dτ

=
∫ ∞

−∞
f(τ)f(τ − t)dτ.

F"ur t = 0 folgt

fA(0) =
∫ ∞

−∞
f(τ)f(τ)dτ

=
∫ ∞

−∞
f(t)2dt.
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•
fA(t) = (f ∗ f−)(t)c s F (ω)F (ω)

= |F (ω)|2.

• Aus

fA(t) = 1
2π

∫ ∞

−∞
|F (ω)|2ejωtdω

folgt f"ur t = 0

fA(0) = 1
2π

∫ ∞

−∞
|F (ω)|2ejω0dω∫ ∞

−∞
f(t)2dt = 1

2π

∫ ∞

−∞
|F (ω)|2dω.

Exercise 10. Compute the Fourier Transform of
cos(2t) sin(3t)

in three different ways:

• using complex exponential functions for the cosine- and sine function.
• using the modulation theorem

f(t) cos(ω̂)t c s 1
2 (F (ω − ω̂) + F (ω + ω̂)) .

• using the convolution theorem in frequency domain

f(t)g(t) c s 1
2π

(F ∗ G)(ω).

Solution for Exercise 10.

Using complex exponentials.

cos(2t) sin(3t) = 1
2

(
e2jt + e−2jt

)
+ 1

2j

(
e3jt − e−3jt

)
= 1

4j

(
e5jt − e−jt + ejt − e−5jt

)
c s 2π

4j

(
δ(ω − 5) − δ(ω + 1) + δ(ω − 1) − δ(ω + 5)

)
= jπ

2

(
δ(ω + 5) − δ(ω − 5) + δ(ω + 1) − δ(ω − 1)

)
Using modulation theorem. From the table of correspondences in the
lecture notes we obtain

sin(3t) c s −jπ(δ(ω − 3) − δ(ω + 3)).
From the modulation theorem it follows that

cos(2t) sin(3t) c s −jπ

2 (δ(ω − 2 − 3) − δ(ω − 2 + 3) + δ(ω + 2 − 3) − δ(ω + 2 + 3))

= jπ

2 (δ(ω + 5) − δ(ω − 5) + δ(ω + 1) − δ(ω − 1))
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Using convolution theorem in frequency domain. Sei

f(t) = cos(2t)
g(t) = sin(3t).

From the table of correspondences in the lecture notes we obtain

cos(2t) c s π(δ(ω − 2) + δ(ω + 2))
sin(3t) c s −jπ(δ(ω − 3) − δ(ω + 3)).

It follows that

f(t)g(t)c s 1
2π

(F ∗ G)(ω)

= 1
2π

∫ ∞

−∞
F (u)G(ω − u)du

= 1
2π

(−jπ2)
∫ ∞

−∞

(
δ(u − 2) + δ(u + 2)

)(
δ(ω − u − 3) − δ(ω − u + 3)

)
du

= −jπ

2

∫ ∞

−∞

(
δ(u − 2)δ(ω − u − 3) − δ(u − 2)δ(ω − u + 3)

+δ(u + 2)δ(ω − u − 3) − δ(u + 2)δ(ω − u + 3)
)

du

The integrals are solved separately as follows:∫ ∞

−∞
δ(u − 2)δ(ω − u − 3)du =

∫ ∞

−∞
δ(u − 2)δ(ω − 5)du

= δ(ω − 5)∫ ∞

−∞
δ(u − 2)δ(ω − u + 3)du =

∫ ∞

−∞
δ(u − 2)δ(ω + 1)du

= δ(ω + 1)∫ ∞

−∞
δ(u + 2)δ(ω − u − 3)du =

∫ ∞

−∞
δ(u + 2)δ(ω − 1)du

= δ(ω − 1)∫ ∞

−∞
δ(u + 2)δ(ω − u + 3)du =

∫ ∞

−∞
δ(u + 2)δ(ω + 5)

= δ(ω + 5)

Hence

f(t)g(t) c s − j

2π

(
δ(ω − 5) − δ(ω + 1) + δ(ω − 1) − δ(ω + 5)

)
= j

2π

(
δ(ω + 5) − δ(ω − 5) + δ(ω + 1) − δ(ω − 1)

)
.

Exercise 11. Let

f(t) = ejωt
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be a complex oscillation with constant angular frequency ω. Show that

(f ∗ g)(t) = G(ω)ejωt

where

G(ω) =
∫ ∞

−∞
g(τ)e−jωτ dτ

is the Fourier Transform of g(t).
This means that a linear, time invariant systems answeres to an oscillation
with angular frequency ω always with an oscillation with the same angular
frequency ω. The oscillation is merely multiplied by a constant (time
independent) factor G(ω). As G(ω) is complex this means a phase shift
and an amplification of the oscillation.

Solution for Exercise 11.

(f ∗ g)(t) =
∫ ∞

−∞
f(t − τ)g(τ)dτ

=
∫ ∞

−∞
ejω(t−τ)g(τ)dτ

= ejωt

∫ ∞

−∞
g(τ)e−jωτ dτ

= G(ω)ejωt.

Exercise 12. Figure 1 shows the Fourier Transform F (ω) of a band limited
signal f(t) with cut-off frequency ω̂.

−ω̂ ω̂

F (ω)

ω

Figure 1: Fourier Transform of f(t).

Let

f(t) cos(ω0t) c s Fmod(ω).

where ω0 > ω̂.

• Make a sketch of Fmod(ω). Use the frequency shifting property of
Fourier Transform.
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• What might be the purpose to multiply a signal f(t) before its trans-
mission by cos(ω0t)?

• What is the result if the signal is multplied a second time by cos(ω0t)
and then convolved with a function g(t) whose Fourier Transform is

G(ω) =
{

2 if −ω̂ ≤ ω ≤ ω̂
0 else?

Solution for Exercise 12. According to the frequency shifting property of
Fourier Transform it holds that

f(t)ejω0t c s F (ω − ω0).

From
cos(ω0t) = 1

2
(
ejω0t + e−jω0t

)
it follows that

f(t) cos(ω0t) = 1
2f(t)ejω0t + 1

2f(t)e−jω0t

c s 1
2F (ω − ω0) + 1

2F (ω + ω0)

= Fmod(ω).

This means that Fmod(ω) consists of two copies of F (ω) with half ampli-
tude each and shifted by ω0 to the left and to the right, see Figure 2. As
ω0 > ω̂, the copies do not overlap.

Fmod(ω)

−ω0 ω0

ω
−ω̂ ω̂

F (ω)

ω

Figure 2: Left: Fourier Transform of f(t). Right: Fourier Transform of
f(t) cos(ω0t).

A second multiplication by cos(ω0t) gives

f(t) cos(ω0t) cos(ω0t)c s 1
2Fmod(ω − ω0) + 1

2Fmod(ω + ω0)

= 1
4F (ω − 2ω0) + 1

4F (ω) + 1
4F (ω) + 1

4F (ω + 2ω0)

= 1
4F (ω − 2ω0) + 1

2F (ω) + 1
4F (ω + 2ω0)

= Frek(ω),
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see Figure 3.

Fmod(ω)

−ω0 ω0

ω
−2ω0 −ω0 ω0

ω
2ω0

Frek(ω)

Figure 3: Left: Fourier Transform of f(t) cos(ω0t). Right: Fourier Transform of
f(t) cos(ω0t) cos(ω0t).

Low pass filtering with G(ω) reconstructs in frequency domain F (ω) and
correspondingly in time domain the original f(t). This method is called
amplitude modulation and is used when several signals are transmitted
over the same medium. Each signal is assigned its exclusive frequency
band (here [ω0 − ω̂, ω0 + ω̂]).
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