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Exercise 1. Let F (ω) be the Fourier Transform of f(t). What do the following
operations and assumptions on f(t) mean for F (ω)?

• f(t) is multiplied by a Ts-periodic pulse train.
• f(t) is T0-periodic.
• f(t) is band limited with cut-off frequency ω̂.

Solution for Exercise 1.

• Multiplication of f(t) with a Ts periodic pulse train corresponds to
the ωs-periodic continuation of F (ω) and scaling by 1/Ts.

• If f(t) is periodic with period T0 then F (ω) consists of Dirac pulses
with distance ω0. The amplitudes of the pulse at ω = kω0 is propor-
tional to the j-th Fourier coefficient zk of f .

• If f(t) is band limited with cut-off frequency ω̂, then F (ω) = 0 for
|ω| > ω̂.

Exercise 2. Show that discrete convolution is commutative, i.e.
∞∑

k=−∞

fkgℓ−k =
∞∑

k=−∞

gkfℓ−k.

Solution for Exercise 2. With substitution k′ = ℓ − k (or k = ℓ − k′) we
obtain

∞∑
k=−∞

fkgℓ−k =
−∞∑

k′=∞

fℓ−k′gk′ .

Substitution k = k′ gives
−∞∑

k=∞

fℓ−kgk =
∞∑

k=−∞

fℓ−kgk

=
∞∑

k=−∞

gkfℓ−k.

Note that in contrast to integrals there is no dt in sums and thanks to
commutativity the order of the summands is arbitrary.

Exercise 3. (Quadrature Amplitude Modulation.) The modulation the-
orem of Fourier Transform says that

f(t) cos(ω̂t) c s 1
2(F (ω − ω̂) + F (ω + ω̂)).
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If you consider the derivation of this theorem you can show in the same
way that

f(t) sin(ω̂t) c s 1
2j

(F (ω − ω̂) − F (ω + ω̂)).

These theorems can be used to transmit two real signals f(t) and g(t) si-
multaneously in the same frequency band. This method is called quadra-
ture amplitude modulation.

• The sender modulates f(t) with cos(ω̂t) and g(t) with sin(ω̂t) and
adds both signals.

• If the receiver wants to obtain f(t), he demodulates with cos(ω̂t).
• If the receiver wants to obtain g(t), he demodulates with sin(ω̂t).

This can be seen as follows: The sender signal with the modulated f(t)
and g(t) is

h(t) = f(t) cos(ω̂t) + g(t) sin(ω̂t).

• Show that

h(t) cos(ω̂t) c s
1
2F (ω) + 1

4 (F (ω − 2ω̂) + F (ω + 2ω̂) + jG(ω − 2ω̂) − jG(ω + 2ω̂))︸ ︷︷ ︸
components in the 2ω̂ band

After lowpass filtering and multiplication with 2 we obtain f(t).
• Show that

h(t) sin(ω̂t) c s
1
2G(ω) + 1

4 (−jF (ω − 2ω̂) + jF (ω + 2ω̂) − G(ω − 2ω̂) − G(ω + 2ω̂))︸ ︷︷ ︸
components in the 2ω̂ band

After lowpass filtering and multiplication with 2 we obtain g(t).

Solution for Exercise 3. It holds that

f(t)ejω̂t c s ∫ ∞

−∞
f(t)ejω̂te−jωtdt

=
∫ ∞

−∞
f(t)e−j(ω−ω̂)tdt

= F (ω − ω̂).
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Hence

f(t) cos(ω̂t) = f(t)ejω̂t + e−jω̂t

2
= 1

2
(
f(t)ejω̂t + f(t)e−jω̂t

)
c s 1

2(F (ω − ω̂) + F (ω + ω̂))

f(t) sin(ω̂t) = f(t)ejω̂t − e−jω̂t

2j

= 1
2j

(
f(t)ejω̂t − f(t)e−jω̂t

)
c s 1

2j
(F (ω − ω̂) − F (ω + ω̂))

Therefore

h(t) = f(t) cos(ω̂t) + g(t) sin(ω̂t)c s 1
2(F (ω − ω̂) + F (ω + ω̂)) + 1

2j
(G(ω − ω̂) − G(ω + ω̂))

= 1
2(F (ω − ω̂) + F (ω + ω̂)) − jG(ω − ω̂) + jG(ω + ω̂))

= H(ω).

Further we obtain

h(t) cos(ω̂t) c s 1
2(H(ω − ω̂) + H(ω + ω̂))

= 1
4(F (ω − 2ω̂) + F (ω) − jG(ω − 2ω̂) + jG(ω) +

F (ω) + F (ω + 2ω̂) − jG(ω) + jG(ω + 2ω̂))

= 1
2F (ω) + 1

4(F (ω − 2ω̂) + F (ω + 2ω̂) − jG(ω − 2ω̂) + jG(ω + 2ω̂))

and

h(t) sin(ω̂t) c s 1
2j

(H(ω − ω̂) − H(ω + ω̂))

= 1
4j

(F (ω − 2ω̂) + F (ω) − jG(ω − 2ω̂) + jG(ω) −

(F (ω) + F (ω + 2ω̂) − jG(ω) + jG(ω + 2ω̂)))

= 1
4j

(F (ω − 2ω̂) + F (ω) − jG(ω − 2ω̂) + jG(ω) −

F (ω) − F (ω + 2ω̂) + jG(ω) − jG(ω + 2ω̂))

= 1
2G(ω) + 1

4j
(F (ω − 2ω̂) − F (ω + 2ω̂) − jG(ω − 2ω̂) − jG(ω + 2ω̂))

= 1
2G(ω) + 1

4(−jF (ω − 2ω̂) + jF (ω + 2ω̂) − G(ω − 2ω̂) − G(ω + 2ω̂)).
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Exercise 4. In the lecture we derived the Fourier series of the pulse train p(t):

p(t) =
∞∑

n=−∞
δ(t − nTs)

= 1
Ts

∞∑
k=−∞

ejkωst, ωs = 2π/Ts.

Use this representation to compute the Fourier Transform P (ω) of p(t) and
show that P (ω) is also a pulse train. You may use the correspondence

ejω̂t c s 2πδ(ω − ω̂).

Solution for Exercise 4. From linearity of Fourier Transform it follows that

p(t) = 1
Ts

∞∑
k=−∞

ejkωst

c s 1
Ts

∞∑
k=−∞

2πδ(ω − kωs)

= 2π

Ts

∞∑
k=−∞

δ(ω − kωs)

= ωs

∞∑
k=−∞

δ(ω − kωs).

This is a pulse train where the distance between the pulses is ωs and their
magnitude is ωs.

Exercise 5. In the lecture we computed the Fourier Transform Fp(ω) of fp(t) =
f(t)p(t) using the frequency shift property of the Fourier Transform:

fp(t) = f(t)p(t) c s 1
Ts

∞∑
k=−∞

F (ω − kωs) = Fp(ω).

An alternative way would have been to derive Fp(ω) using the convolution
theorem in frequency domain:

f(t)p(t) c s 1
2π

(F ∗ P )(ω).

In a previous exercise we computed P (ω). Now compute the convolution
(F ∗ P )(ω) and show that in fact

Fp(ω) = 1
2π

(F ∗ P )(ω).

Solution for Exercise 5. From the previous exercise we obtain

P (ω) = ωs

∞∑
k=−∞

δ(ω − kωs).
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It follows that

1
2π

(F ∗ P )(ω) =
∫ ∞

−∞
F (u)P (ω − u)du

= 1
2π

∫ ∞

−∞
F (u) ωs

∞∑
k=−∞

δ(ω − u − kωs)︸ ︷︷ ︸
P (ω−u)

du

= 1
Ts

∞∑
k=−∞

∫ ∞

−∞
F (u)δ(ω − kωs − u)du

= 1
Ts

∞∑
k=−∞

∫ ∞

−∞
F (ω − kωs)δ(ω − kωs − u)du

= 1
Ts

∞∑
k=−∞

F (ω − kωs)
∫ ∞

−∞
δ(ω − kωs − u)du

= 1
Ts

∞∑
k=−∞

F (ω − kωs).

The same result can be obtained in a more straight forward way by using
linearity of convolution and the fact that convolution with a shifted pulse
causes a shift in the result:

1
2π

(F ∗ P )(ω) = 1
2π

F (ω) ∗ ωs

∞∑
k=−∞

δ(ω − kωs)

= ωs

2π

∞∑
k=−∞

F (ω) ∗ δ(ω − kωs)

= 1
Ts

∞∑
k=−∞

F (ω − kωs)

Exercise 6. (Sampling rate conversion) The formula

f(t) =
∞∑

n=−∞
fnsinc(n − t/Ts)

was derived in the lecture and used to reconstruct the analog signal f(t)
from samples fn.
It can also be applied to change the sampling rate. Derive a formula which
takes samples fn with sampling rate ωs and returns new samples f ′

n of the
same signal f(t) but with a different sampling rate ω′

s.
You may assume that f(t) is band limited with cut-off frequency ω̂ and
the the old and new sampling rate ωs and ω′

s are larger than 2ω̂.
Choose a suitable approximation to truncate the infinite sum to a finite
sum with 2N + 1 summands and implement a function to change the
sampling rate. The function takes a finite sequence fn of samples as well
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as the old and new sampling rate ωs and ω′
s and returns a new sequence

of samples f ′
n.

Verify your program with a simple function like f(t) = cos(ω̂t) and ωs, ω′
s >

2ω̂. The samples are

fℓ = f(ℓTs)
= cos(ω̂ℓTs).

The samples with new sampling rate ω′
s are

f ′
ℓ ≈ f(ℓT ′

s)
= cos(ω̂ℓT ′

s).

Verify that the approximation is more accurate as N increases.
In order to avoid boundary effects, it is assumed that fℓ and f ′

ℓ are in-
finitely long, but of course only finitely many samples of f ′

ℓ are actually
computed.

Solution for Exercise 6.

f ′
ℓ = f(ℓT ′

s)

=
∞∑

n=−∞
fnsinc(n − ℓT ′

s/Ts)

=
∞∑

n=−∞
fnsinc(n − ℓωs/ω′

s)

=
∞∑

n=−∞
fnsinc(n − ℓβ)

where

β = ωs

ω′
s

.

The sinc-function gives significant values if

ℓβ ≈ n.

Let

n0 = round (ℓβ) .

Then

f ′
ℓ ≈

n0+N∑
n=n0−N

fnsinc(n − ℓβ).

The approximation is more accurate for larger values of N . On the other
hand, a large value of N costs more computing time.
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Exercise 7. The discrete convolution of two sequences f, g is definied by

(f ∗ g)ℓ =
∞∑

k=−∞

gkfℓ−k.

If f and g are causal, this simplifies to

(f ∗ g)ℓ =
ℓ∑

k=0
gkfℓ−k.

If g has finite length N (FIR filter), the formula simplifies further to

(f ∗ g)ℓ =
N−1∑
k=0

gkfℓ−k.

This means that for each sample ℓ the same number N of multiplications
and N − 1 of additions have to be performed and the filter can operate in
real time.
Implement a function which takes two causal sequences f, g and an integer
ℓ as input and returns (f ∗ g)ℓ. Test your program e.g. by choosing one
signal as the Dirac pulse or a shifted Dirac pulse. The discrete Dirac pulse
is defined as

δk =
{

1 for k = 0
0 for k ̸= 0.

Solution for Exercise 7. Programming exercise.

Exercise 8. Generate a signal which consists of two cosine functions with dif-
ferent frequencies ω1 and ω2 where ω1 < ω2:

f1(t) = cos(ω1t)
f2(t) = cos(ω2t)
f(t) = f1(t) + f2(t).

Generate samples of f with sampling interval Ts:

fk = f(kTs).

Make sure that the samping rate ωs = 2π/Ts is sufficiently high, i.e.

ωs > 2ω2.

Compute samples hℓ of the lowpass filtered signal h(t) with cutoff fre-
quency ωc by discrete convolution

hℓ =
N∑

k=−N

gkfℓ−k

where

gk = ω̂csinc(kω̂c), ω̂c = 2ωc

ωs
, k = −N . . . , N
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are the coefficients of the truncated lowpass filter.
Choose the cutoff frequency ωc such that

ω1 < ωc < ω2.

In this case the high frequency signal f2 is filtered out and f1 remains
unchanged. Large values for N (like N > 50) lead to more accurate
results, but take more computing time. Verify your results by comparing
plots of samples of f and h. Try different values for N , ω1, ω2, ωc and ωs.
In order to avoid boundary problems you may assume that f has infinite
lenght, although only finitely many samples fℓ−N , . . . , fℓ+N are actually
needed to compute hℓ.

Solution for Exercise 8. Programming exercise.
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