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Exercise 1. Let F(w) be the Fourier Transform of f(¢). What do the following
operations and assumptions on f(¢) mean for F'(w)?
e f(t) is multiplied by a T,-periodic pulse train.
e f(t) is Tp-periodic.
e f(t) is band limited with cut-off frequency @.
Solution for Exercise 1.
o Multiplication of f(¢) with a Ty periodic pulse train corresponds to

the wg-periodic continuation of F'(w) and scaling by 1/T.

o If f(t) is periodic with period Ty then F(w) consists of Dirac pulses
with distance wg. The amplitudes of the pulse at w = kwq is propor-
tional to the j-th Fourier coefficient z; of f.

o If f(t) is band limited with cut-off frequency @, then F(w) = 0 for
lw] > &.
Exercise 2. Show that discrete convolution is commutative, i.e.

oo

> hgek =Y grfir

k=—o00 k=—o00

Solution for Exercise 2. With substitution ¥’ = ¢ — &k (or k = ¢ — k') we
obtain

> frger = i Jo—k grr-

k=—o0 k'=o00

Substitution k = k' gives

Mo fewge = Y fenge
k=00

k=—o00
(o]

= D gfrw

k=—o0

Note that in contrast to integrals there is no dt in sums and thanks to
commutativity the order of the summands is arbitrary.

Exercise 3. (Quadrature Amplitude Modulation.) The modulation the-
orem of Fourier Transform says that

F(t) cos(st) o—e %(F(w _O) 4 Flw+ ).



If you consider the derivation of this theorem you can show in the same
way that

1

f(t)sin(@t) o—e Z(F(w - Q) — Flw+®)).

These theorems can be used to transmit two real signals f(t) and g(t) si-
multaneously in the same frequency band. This method is called quadra-
ture amplitude modulation.

o The sender modulates f(t) with cos(&t) and g¢(t) with sin(@t) and
adds both signals.

o If the receiver wants to obtain f(t), he demodulates with cos(@t).

« If the receiver wants to obtain g(t), he demodulates with sin(wt).

This can be seen as follows: The sender signal with the modulated f(t)
and g(t) is

h(t) = f(t)cos(@t) + g(t)sin(wt).
e Show that
h(t) cos(wt) o—e
1

iF(w) + i (F(w—20) 4+ F(w+20) + jG(w — 20) — jG(w + 2w))

components in the 2@ band

After lowpass filtering and multiplication with 2 we obtain f(¢).
e Show that
h(t)sin(ot) o—e

%G(w) + % (—jF(w — 20) + jF(w + 20) — G(w — 20) — G(w + 20))

components in the 20 band
After lowpass filtering and multiplication with 2 we obtain g(¢).

Solution for Exercise 3. It holds that

foet o—e | T persteietgy

_ / T pp)eieorngy
Flw-o)



Hence

eidt 4 o—idt

feos@r) = T
= SUOF 4 fne )
o—e L(F(w—0)+ Fw+5))
fsm@n = f0 5
= (e — e
o—e 5 (Plw=&) = Flw+3)
Therefore
h(t) = f(t)cos(@t) + g(t) sin(@t)
o—e (Flw—0)+ Fw+0))+ %(G(w _ )= Glw+ &)
= (Pl —0) + Fw+8)) - G~ ) + jC(w +5))
= H@)

Further we obtain
h(t) cos(&t) o—e %(H(w —0)+ Hw+d))
_ i(F(w — 20) + F(w) — jG(w — 20) + jG(w) +
F(w) 4 F(w +20) — jG(w) + jG(w + 20))
(

. %F(w) + i(F(w _90) + Flw+ 20) — jG(w — 20) + jG(w + 26))

and
%(H(w _ ) — H(w+0))

= 1J_(F(w —20)+ F(w) — jG(w —20) + jG(w) —
(F(w) 4+ Flw+20) — jG(w) + jG(w + 20)))
J

h(t)sin(wt) o—e

4j
%(F(w —96) 4 F(w) — jG(w — 20) + jGw) —

F(w) — F(w +25) + jG(w) — jG(w + 20))

;G(w) + %(F(w 90) — Flw+20) — jG(w — 20) — jG(w + 2))
;G(w) + i(—jF(w —20) 4 jF(w + 20) — Gw — 20) — G(w + 20)).



Exercise 4. In the lecture we derived the Fourier series of the pulse train p(t):

pt) = Y 6(t—nTy)

n=-—oo
1 o0

= 7 Z elhwst = 21 /T,
8 k=—o0

Use this representation to compute the Fourier Transform P(w) of p(t) and
show that P(w) is also a pulse train. You may use the correspondence

eIt o—e 2m6(w — D).
Solution for Exercise 4. From linearity of Fourier Transform it follows that

1 = jkwst
p(t) = 726”

8 k=—o0

= w;s Z O(w — kws).

k=—o00

This is a pulse train where the distance between the pulses is ws and their
magnitude is w;.

Exercise 5. In the lecture we computed the Fourier Transform F,(w) of f,(t) =
f(@)p(t) using the frequency shift property of the Fourier Transform:
1 oo
> Flw—kw,) = Fpw).

¥ k=—o0

An alternative way would have been to derive Fj,(w) using the convolution
theorem in frequency domain:

1
I

f@)p(t) o—e (F * P)(w).

In a previous exercise we computed P(w). Now compute the convolution
(F % P)(w) and show that in fact

Fyw) = o= (F + P)(w).

2

Solution for Exercise 5. From the previous exercise we obtain

Plw) = ws Z 0(w — kws).

k=—o00



It follows that

1 oo

2—(F * P)(w) = / F(u)P(w — u)du

™ — 00

1 [ -
= 5 - F(u)ws k_z_ d(w —u — kws) du
P(w—u)
_ 1y h F(u k d
— i Z = §(w — kw, — u)du
_ 2 3 h kws)d k d
= 7 Z Fw — kws)d(w — kws — u)du
k=—0c0 Y~

|
H-
Nl

F(w — kwy) / 0(w — kws — u)du

S k=—o0
= — g F(w — kws).
¥ k=—o0

The same result can be obtained in a more straight forward way by using
linearity of convolution and the fact that convolution with a shifted pulse
causes a shift in the result:

%(F*P)(w) = W) * W Z 6(w — kws)
k=—c0
= ;L; Z F(w) % §(w — kwy)
k=—o00
= Ti Z F(w — kwy)
S k=—00

Exercise 6. (Sampling rate conversion) The formula

f@) = Z fusine(n —t/Ts)

n=-—oo

was derived in the lecture and used to reconstruct the analog signal f(t)
from samples f,.

It can also be applied to change the sampling rate. Derive a formula which
takes samples f,, with sampling rate ws and returns new samples f! of the
same signal f(¢) but with a different sampling rate w’.

You may assume that f(¢) is band limited with cut-off frequency & and
the the old and new sampling rate ws and w’, are larger than 2&.

Choose a suitable approximation to truncate the infinite sum to a finite
sum with 2N + 1 summands and implement a function to change the
sampling rate. The function takes a finite sequence f,, of samples as well



as the old and new sampling rate w; and w’, and returns a new sequence
of samples f/.

Verify your program with a simple function like f(¢) = cos(&t) and ws, W, >
2w. The samples are

fo = JUT)
= cos(&lTs).

The samples with new sampling rate w’, are

fo = fUT)
= cos(WlTY).

Verify that the approximation is more accurate as N increases.

In order to avoid boundary effects, it is assumed that f, and f; are in-
finitely long, but of course only finitely many samples of f; are actually
computed.

Solution for Exercise 6.
fi = fry)
= Z fnsine(n — €T/ Ty)

= Z fnsine(n — lws /W)
= Z fnsine(n — £3)
where
Ws
ﬂ = Wi{s

The sinc-function gives significant values if

{3 ~n.
Let
ng = round ({0).
Then
no+N
fi~ Z fnsinc(n — £5).
n=ng—N

The approximation is more accurate for larger values of N. On the other
hand, a large value of N costs more computing time.



Exercise 7. The discrete convolution of two sequences f, g is definied by

o

(fx9)e = > gfen

k=—oc0

If f and g are causal, this simplifies to

¢
(f*9)e = > gufor-
k=0

If g has finite length N (FIR filter), the formula simplifies further to

N-1
(fx9)e = > gufrr
k=0

This means that for each sample ¢ the same number N of multiplications
and N — 1 of additions have to be performed and the filter can operate in
real time.

Implement a function which takes two causal sequences f, g and an integer
¢ as input and returns (f x g)g. Test your program e.g. by choosing one
signal as the Dirac pulse or a shifted Dirac pulse. The discrete Dirac pulse

is defined as
5. — 1 fork=0
7l 0 fork#£0.

Solution for Exercise 7. Programming exercise.

Exercise 8. Generate a signal which consists of two cosine functions with dif-
ferent frequencies wy and wo where wy < wa:

fit) = cos(wit)

fa(t) = cos(wat)

f@) = fH@)+ f20).
Generate samples of f with sampling interval T:

Make sure that the samping rate ws = 27/, is sufficiently high, i.e.
ws > 2wa.

Compute samples hy of the lowpass filtered signal h(t) with cutoff fre-
quency w, by discrete convolution

N
he = Y gefes
k=—N
where
. . N 2w,
g = Wesinc(k®.), We = , k= -N...,N
Ws



are the coefficients of the truncated lowpass filter.

Choose the cutoff frequency w. such that
w1 < We < Wa.

In this case the high frequency signal fo is filtered out and f; remains
unchanged. Large values for N (like N > 50) lead to more accurate
results, but take more computing time. Verify your results by comparing
plots of samples of f and h. Try different values for NV, w;, ws, w, and w;.

In order to avoid boundary problems you may assume that f has infinite
lenght, although only finitely many samples f;_n,..., fern are actually
needed to compute hy.

Solution for Exercise 8. Programming exercise.



