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Exercise 1. Implement a function which takes a vector f⃗ ∈ Rn as input and
returns B∗f⃗ . As discussed in the lecture the function should not execute
n2 multiplications but only (n2+n)/2. Take the algorithm from the lecture
as a guideline. Compare the results with a “normal” matrix multiplication
using some random test vectors f⃗ . Due to rounding errors small deviations
may occur.

Solution for Exercise 1. Programming exercise
Exercise 2. Prove that

n−1∑
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fℓe
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ℓ=0
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(e)
ℓ e−2πjkℓ/(n/2) + e−2πjk/n
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for k = 0, 1, . . . , n/2 − 1 where

f
(e)
ℓ = f2ℓ

f
(o)
ℓ = f2ℓ+1, ℓ = 0, 1, . . . , n/2 − 1.

Note that vector f⃗ (e) contains the even indexed components of f⃗ and f⃗ (o)

the odd ones.
Hint: Begin by splitting the sum into two sums where the first runs over
even ℓ and the second over odd ℓ. Next, transform the summation indices
such that both sums run from 0 to n/2 − 1. Further, use

2ℓ

n
= ℓ

n/2 .

Solution for Exercise 2.
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∑
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ℓ e−2πjkℓ/(n/2)

1



Exercise 3. Prove that

ak+n/2 = ak

bk+n/2 = bk.

where

ak =
n/2−1∑
ℓ=0

f
(e)
ℓ e−2πjkℓ/(n/2)

bk =
n/2−1∑
ℓ=0

f
(o)
ℓ e−2πjkℓ/(n/2).

Hint: ak+n/2 is obtained from ak if each k is replaced by (k + n/2). All you
have to do is apply the properties of the exponential function and

e−2πjℓ = 1

for all integers ℓ.

Solution for Exercise 3.
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Exercise 4. Implement the n-FFT as a recursive function where n is a power
of two. The FFT has to give the same results as the DFT up to rounding
errors. Test your results with some random vectors f⃗ .
Count in a global variable the number of complex multiplications and
verify that it is in fact ony 1

2 nld(n).
Make sure to compute a vector with entries

e2πjk/n, k = 0, 1, . . . , n/2 − 1

in advance and store it either as a global variabel or pass it to the FFT
function. As the evaluation of a comlex e-function is expensive and your
system will compute many FFTs, it is essential that those exponentials
are not recomputed in each call.

Solution for Exercise 4. Programming exercise.

Exercise 5. Implement a function for the computation of B∗f⃗ with the FFT.

• Implement the function first in a straight forward way with recursive
function calls.

• Next implement the iterative version of the FFT. You have to re-
arrange the components of the input vector f⃗ according to the bit
reverse scheme.

• Important: The computation of the coefficients e−2πjk/n has to be
done in a separate function in advance. Pass those values to the FFT
function as a parameter. In later applications the FFT is executed
many times consecutively with different input vectors f⃗ and it would
be inefficient to recompute those coefficients each time.

The results of recursive and iterative FFT have to be exactly identical even
in the presence of rounding errors as the same operations are executed.

Solution for Exercise 5. Programming project.

Exercise 6. Modify your implementation of the FFT such that the inverse
FFT f⃗ = Bz⃗ is computed. Essentially you merely have to change one
sign. You will figure this out by studying the derivation of the FFT as
discussed in the lecture.

Solution for Exercise 6. Programming exercise.

Exercise 7. In the lecture we computed the components zk of the FFT using
formulas

zk = ak + bkrk

zk+n/2 = ak − bkrk, k = 0, . . . , n/2 − 1.

This means that the computation of zk for k = n/2, . . . , n−1 costs no more
multiplications, but some additions. However, we could have computed
those zk also using

zn−k = zk, k = 1, . . . , n/2 − 1
zn/2 = 0
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which would save these additions. What is the reason why we did not do
this?

Solution for Exercise 7. Fourier coefficients appear in conjugate pairs only
if the time signal f is real. The second approach would therefore not
work for the inverse FFT. Further zn/2 = 0 holds only if the time domain
signal is band limited and the sampling rate is more than twice the cutoff
frequency.
It is however possible to compute the FFT’s of two real signals f⃗ , g⃗ with
only one complex FFT of f⃗ + jg⃗ using linearity of the FFT and the con-
jugate complex pair property of the Fourier coefficients.
With some additional tricks it is also possible to split a signal vector f⃗ into
two vectors of length n/2, compute the FFT’s of both with one complex
FFT of order n/2, and reconstruct the FFT of the original f⃗ from the result.
This gives a speedup of a real FFT of (almost) factor two compared to a
complex FFT.

4


