

Homework for Digital Signal Processing
Sheet 1

Exercise 1. The convolution $f * g$ of two functions f, g is defined by

$$(f * g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t - \tau)d\tau.$$

Let $f \in \mathbb{R} \rightarrow \mathbb{R}$ und $c \in \mathbb{R}$. The function cf is defined by

$$cf \in \mathbb{R} \rightarrow \mathbb{R}, \quad (cf)(t) = cf(t).$$

Show that

$$(cf) * g = c(f * g).$$

Exercise 2. The delay of a signal f by \hat{t} is indicated by an index \hat{t} , i.e.

$$f_{\hat{t}}(t) = f(t - \hat{t}).$$

Show that

$$f_{\hat{t}} * g = (f * g)_{\hat{t}}.$$

Exercise 3. Let g be a T -periodic function. Show that $f * g$ is also a T -periodic function for any function f .

Exercise 4. Let $a \leq b$ and

$$g(t) = \begin{cases} 1 & \text{if } a \leq t \leq b \\ 0 & \text{else.} \end{cases}$$

Show that for any function f it holds that

$$(f * g)(t) = \int_{t-b}^{t-a} f(x)dx.$$

Exercise 5. Show that convolution is commutative, i.e. for all functions f, g it holds that

$$f * g = g * f.$$

Exercise 6. For $a > 0$ let index a denote the compression of a function by factor a , i.e.

$$f_a(t) = f(at).$$

Show that

$$f_a * g_a = \frac{1}{a} (f * g)_a.$$

Exercise 7. Let $f, g, h \in \mathbb{R} \rightarrow \mathbb{R}$ be functions. Function $g + h$ is defined by

$$g + h \in \mathbb{R} \rightarrow \mathbb{R}, \quad (g + h)(t) = g(t) + h(t).$$

Show that

$$f * (g + h) = (f * g) + (f * h).$$

Exercise 8. Show that $\sigma * f$ is an antiderivative of f , i.e.

$$(\sigma * f)' = f.$$

This means that convolution with σ causes integration.

Exercise 9. Show that

$$(f * g)' = f * g'.$$

The proof is straight forward with Fourier Transform but it is a good exercise to do it in time domain as well.

Exercise 10. The Heaviside step function $\sigma(t)$ is defined by

$$\sigma(t) = \begin{cases} 1 & \text{if } t \geq 0 \\ 0 & \text{else.} \end{cases}$$

- Let

$$\begin{aligned} f(t) &= \sigma(t)e^{at} \\ g(t) &= \sigma(t)e^{bt}. \end{aligned}$$

Compute

$$(f * g)(t)$$

and simplify the result as much as possible. Consider also the special case $a = b$.

- Use your result to compute $f * g$ for

$$\begin{aligned} f(t) &= \sigma(t) \sin(t) \text{ and} \\ g(t) &= \sigma(t) \cos(t). \end{aligned}$$

Hint:

$$\sin(t) = \frac{1}{2j} (e^{jt} - e^{-jt}).$$