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Exercise 1. Let F(w) be the Fourier Transform of f(¢). What do the following
operations and assumptions on f(¢) mean for F'(w)?
e f(t) is multiplied by a Ty-periodic pulse train.
e f(t) is Tp-periodic.
e f(t) is band limited with cut-off frequency @.

Exercise 2. Show that discrete convolution is commutative, i.e.

(oo}

o fegek = Y grfer

k=—o0 k=—o0

Exercise 3. (Quadrature Amplitude Modulation.) The modulation the-
orem of Fourier Transform says that

1
f(t) cos(t) o—e §(F(w — @)+ F(w+®)).
If you consider the derivation of this theorem you can show in the same

way that

1

f(t)sin(@t) o—e Z(F(w —) = Flw+)).

These theorems can be used to transmit two real signals f(t) and g(t) si-
multaneously in the same frequency band. This method is called quadra-
ture amplitude modulation.

o The sender modulates f(t) with cos(&t) and ¢(t) with sin(@t) and
adds both signals.
o If the receiver wants to obtain f(¢), he demodulates with cos(dt).

o If the receiver wants to obtain g(t), he demodulates with sin(wt).

This can be seen as follows: The sender signal with the modulated f(¢)
and g(t) is

h(t) = f(t)cos(@t) + g(t)sin(wt).
o Show that
h(t) cos(wt) o—e
1

iF(w) + i (Fw—20)+ F(w+20) + jG(w — 20) — jG(w + 2i))

components in the 2& band

After lowpass filtering and multiplication with 2 we obtain f(t).



e Show that
h(t) sin(wt) o—e

%G(w) + i (—jF(w— 20) + jF(w + 20) — Glw — 20) — Glw + 2))

components in the 2@ band
After lowpass filtering and multiplication with 2 we obtain g(¢).

Exercise 4. In the lecture we derived the Fourier series of the pulse train p(t):

i o(t —nTy)

p(t) =
Lo
= 7 Z efhwst g =2/ T,.
S k=—o00

Use this representation to compute the Fourier Transform P(w) of p(t) and
show that P(w) is also a pulse train. You may use the correspondence

et o—e 2m6(w — D).

Exercise 5. In the lecture we computed the Fourier Transform F,(w) of f,(t) =
f(@)p(t) using the frequency shift property of the Fourier Transform:

fo(t) = F(Dp(t) o—e Ti S F(w— hws) = Fy(w).

An alternative way would have been to derive F,(w) using the convolution
theorem in frequency domain:

1
I

f@)p(t) o—e (F * P)(w).

In a previous exercise we computed P(w). Now compute the convolution
(F * P)(w) and show that in fact

1

2m

F,

W) = o (F # P)(w).

Exercise 6. (Sampling rate conversion) The formula

f@) = Z fusine(n —t/Ts)

n=-—oo

was derived in the lecture and used to reconstruct the analog signal f(t)
from samples f,.

It can also be applied to change the sampling rate. Derive a formula which
takes samples f,, with sampling rate ws and returns new samples f/ of the
same signal f(¢) but with a different sampling rate w’.

You may assume that f(¢) is band limited with cut-off frequency & and
the the old and new sampling rate ws and w’, are larger than 2&.



Choose a suitable approximation to truncate the infinite sum to a finite
sum with 2N + 1 summands and implement a function to change the
sampling rate. The function takes a finite sequence f,, of samples as well
as the old and new sampling rate w, and w!, and returns a new sequence
of samples f.

Verify your program with a simple function like f(t) = cos(&t) and wg, w’, >
2. The samples are

fo = JUT)
= cos(&lTs).

The samples with new sampling rate w’, are
fo = flry)
= cos(WlTY).
Verify that the approximation is more accurate as N increases.

In order to avoid boundary effects, it is assumed that f, and f; are in-
finitely long, but of course only finitely many samples of f; are actually
computed.

Exercise 7. The discrete convolution of two sequences f, g is definied by

o0

(fx9)e = > gufeon

k=—o0

If f and g are causal, this simplifies to

¢
(f*9)e = > gufrr.
k=0

If g has finite length N (FIR filter), the formula simplifies further to

N-1
(f*9)e = > gufer
k=0

This means that for each sample ¢ the same number N of multiplications
and N — 1 of additions have to be performed and the filter can operate in
real time.

Implement a function which takes two causal sequences f, g and an integer
£ as input and returns (f x g)g. Test your program e.g. by choosing one
signal as the Dirac pulse or a shifted Dirac pulse. The discrete Dirac pulse
is defined as

5. = {1 for k=0

0 for k#0.

Exercise 8. Generate a signal which consists of two cosine functions with dif-
ferent frequencies wy and wo where wy < wa:
fit) = cos(wit)
f2(t) = cos(wat)
&) = A0+ fL0).



Generate samples of f with sampling interval T}:
fo = [f(KT).
Make sure that the samping rate wy = 27/7, is sufficiently high, i.e.
ws > 2ws.

Compute samples hy of the lowpass filtered signal h(¢) with cutoff fre-
quency w,. by discrete convolution

N
he = Y gefes
=N
where
. ~ N 2w,
g = Wesinc(kd,), We = , k= —-N...,N
ws

are the coefficients of the truncated lowpass filter.

Choose the cutoff frequency w. such that
w1 < We < Wo.

In this case the high frequency signal fo is filtered out and f; remains
unchanged. Large values for N (like N > 50) lead to more accurate
results, but take more computing time. Verify your results by comparing
plots of samples of f and h. Try different values for N, wy, ws, w. and w;.

In order to avoid boundary problems you may assume that f has infinite
lenght, although only finitely many samples f;_n,..., feon are actually
needed to compute hy.



