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Exercise 1. Let F (ω) be the Fourier Transform of f(t). What do the following
operations and assumptions on f(t) mean for F (ω)?

• f(t) is multiplied by a Ts-periodic pulse train.
• f(t) is T0-periodic.
• f(t) is band limited with cut-off frequency ω̂.

Exercise 2. Show that discrete convolution is commutative, i.e.
∞∑

k=−∞

fkgℓ−k =
∞∑

k=−∞

gkfℓ−k.

Exercise 3. (Quadrature Amplitude Modulation.) The modulation the-
orem of Fourier Transform says that

f(t) cos(ω̂t) c s 1
2(F (ω − ω̂) + F (ω + ω̂)).

If you consider the derivation of this theorem you can show in the same
way that

f(t) sin(ω̂t) c s 1
2j

(F (ω − ω̂) − F (ω + ω̂)).

These theorems can be used to transmit two real signals f(t) and g(t) si-
multaneously in the same frequency band. This method is called quadra-
ture amplitude modulation.

• The sender modulates f(t) with cos(ω̂t) and g(t) with sin(ω̂t) and
adds both signals.

• If the receiver wants to obtain f(t), he demodulates with cos(ω̂t).
• If the receiver wants to obtain g(t), he demodulates with sin(ω̂t).

This can be seen as follows: The sender signal with the modulated f(t)
and g(t) is

h(t) = f(t) cos(ω̂t) + g(t) sin(ω̂t).

• Show that

h(t) cos(ω̂t) c s
1
2F (ω) + 1

4 (F (ω − 2ω̂) + F (ω + 2ω̂) + jG(ω − 2ω̂) − jG(ω + 2ω̂))︸ ︷︷ ︸
components in the 2ω̂ band

After lowpass filtering and multiplication with 2 we obtain f(t).
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• Show that

h(t) sin(ω̂t) c s
1
2G(ω) + 1

4 (−jF (ω − 2ω̂) + jF (ω + 2ω̂) − G(ω − 2ω̂) − G(ω + 2ω̂))︸ ︷︷ ︸
components in the 2ω̂ band

After lowpass filtering and multiplication with 2 we obtain g(t).

Exercise 4. In the lecture we derived the Fourier series of the pulse train p(t):

p(t) =
∞∑

n=−∞
δ(t − nTs)

= 1
Ts

∞∑
k=−∞

ejkωst, ωs = 2π/Ts.

Use this representation to compute the Fourier Transform P (ω) of p(t) and
show that P (ω) is also a pulse train. You may use the correspondence

ejω̂t c s 2πδ(ω − ω̂).

Exercise 5. In the lecture we computed the Fourier Transform Fp(ω) of fp(t) =
f(t)p(t) using the frequency shift property of the Fourier Transform:

fp(t) = f(t)p(t) c s 1
Ts

∞∑
k=−∞

F (ω − kωs) = Fp(ω).

An alternative way would have been to derive Fp(ω) using the convolution
theorem in frequency domain:

f(t)p(t) c s 1
2π

(F ∗ P )(ω).

In a previous exercise we computed P (ω). Now compute the convolution
(F ∗ P )(ω) and show that in fact

Fp(ω) = 1
2π

(F ∗ P )(ω).

Exercise 6. (Sampling rate conversion) The formula

f(t) =
∞∑

n=−∞
fnsinc(n − t/Ts)

was derived in the lecture and used to reconstruct the analog signal f(t)
from samples fn.
It can also be applied to change the sampling rate. Derive a formula which
takes samples fn with sampling rate ωs and returns new samples f ′

n of the
same signal f(t) but with a different sampling rate ω′

s.
You may assume that f(t) is band limited with cut-off frequency ω̂ and
the the old and new sampling rate ωs and ω′

s are larger than 2ω̂.
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Choose a suitable approximation to truncate the infinite sum to a finite
sum with 2N + 1 summands and implement a function to change the
sampling rate. The function takes a finite sequence fn of samples as well
as the old and new sampling rate ωs and ω′

s and returns a new sequence
of samples f ′

n.
Verify your program with a simple function like f(t) = cos(ω̂t) and ωs, ω′

s >
2ω̂. The samples are

fℓ = f(ℓTs)
= cos(ω̂ℓTs).

The samples with new sampling rate ω′
s are

f ′
ℓ ≈ f(ℓT ′

s)
= cos(ω̂ℓT ′

s).

Verify that the approximation is more accurate as N increases.
In order to avoid boundary effects, it is assumed that fℓ and f ′

ℓ are in-
finitely long, but of course only finitely many samples of f ′

ℓ are actually
computed.

Exercise 7. The discrete convolution of two sequences f, g is definied by

(f ∗ g)ℓ =
∞∑

k=−∞

gkfℓ−k.

If f and g are causal, this simplifies to

(f ∗ g)ℓ =
ℓ∑

k=0
gkfℓ−k.

If g has finite length N (FIR filter), the formula simplifies further to

(f ∗ g)ℓ =
N−1∑
k=0

gkfℓ−k.

This means that for each sample ℓ the same number N of multiplications
and N − 1 of additions have to be performed and the filter can operate in
real time.
Implement a function which takes two causal sequences f, g and an integer
ℓ as input and returns (f ∗ g)ℓ. Test your program e.g. by choosing one
signal as the Dirac pulse or a shifted Dirac pulse. The discrete Dirac pulse
is defined as

δk =
{

1 for k = 0
0 for k ̸= 0.

Exercise 8. Generate a signal which consists of two cosine functions with dif-
ferent frequencies ω1 and ω2 where ω1 < ω2:

f1(t) = cos(ω1t)
f2(t) = cos(ω2t)
f(t) = f1(t) + f2(t).
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Generate samples of f with sampling interval Ts:

fk = f(kTs).

Make sure that the samping rate ωs = 2π/Ts is sufficiently high, i.e.

ωs > 2ω2.

Compute samples hℓ of the lowpass filtered signal h(t) with cutoff fre-
quency ωc by discrete convolution

hℓ =
N∑

k=−N

gkfℓ−k

where

gk = ω̂csinc(kω̂c), ω̂c = 2ωc

ωs
, k = −N . . . , N

are the coefficients of the truncated lowpass filter.
Choose the cutoff frequency ωc such that

ω1 < ωc < ω2.

In this case the high frequency signal f2 is filtered out and f1 remains
unchanged. Large values for N (like N > 50) lead to more accurate
results, but take more computing time. Verify your results by comparing
plots of samples of f and h. Try different values for N , ω1, ω2, ωc and ωs.
In order to avoid boundary problems you may assume that f has infinite
lenght, although only finitely many samples fℓ−N , . . . , fℓ+N are actually
needed to compute hℓ.
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