

Homework for Digital Signal Processing
Sheet 6

Exercise 1. Let $A \in \mathbb{R}^{n \times n}$ be an orthogonal matrix, i.e. a matrix whose columns are pairwise orthogonal unit vectors which means

$$\vec{a}_i \circ \vec{a}_j = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{else} \end{cases}$$

where \vec{a}_i and \vec{a}_j are the i -th and j -th column vector of A . Show that it holds that

$$A^T A = E$$

where E is the $n \times n$ unit matrix.

Exercise 2. Let $\vec{x}, \vec{y} \in \mathbb{C}^n$ be vectors with components

$$\begin{aligned} x_k &= e^{2\pi j u k / n} \\ y_k &= e^{2\pi j v k / n} \end{aligned}$$

for $k = 0, 1, \dots, n-1$. The complex inner product of vectors is defined as

$$\vec{x} \circ \vec{y} = \sum_{k=0}^{n-1} \overline{x_k} y_k.$$

Show that for arbitrary $u, v \in \mathbb{N}_0$ it holds that

$$\vec{x} \circ \vec{y} = \begin{cases} 0 & \text{if } u \neq v \\ n & \text{if } u = v. \end{cases}$$

Hint: Try to rewrite the inner product as

$$\vec{x} \circ \vec{y} = \sum_{k=0}^{n-1} a^k$$

for a suitable a and use the formula

$$\sum_{k=0}^{n-1} a^k = \frac{a^n - 1}{a - 1}.$$

Exercise 3. Write a program which computes matrix $B \in \mathbb{C}^{n \times n}$ for an arbitrary $n \in \mathbb{N}$ where

$$b_{k\ell} = e^{2\pi j k \ell / n}.$$

Exercise 4. Write a program which computes for given Fourier coefficients $\vec{z} \in \mathbb{C}^n$ the corresponding samples \vec{f} by matrix vector multiplication

$$\vec{f} = B \vec{z}.$$

- The Fourier coefficients \vec{z} appear in conjugate complex pairs. Make some tests that \vec{f} is real if \vec{z} satisfies

$$z_{n-k} = \overline{z_k} \text{ for all } k = 1, \dots, n-1.$$

- Test that $f_k = A_0$ for all $k = 0, \dots, n-1$, i.e. the signal is constant if

$$z_0 = A_0, \quad z_k = 0 \text{ for } k = 1, \dots, n-1.$$

- The Fourier coefficients are given by

$$z_k = \frac{1}{2} A_k e^{j\varphi_k}, \quad k = 1, 2, \dots, n/2-1$$

where A_k is the amplitude of the k -th harmonic of $f(t)$ and φ_k is its phase. Verify that the samples \vec{f} are actually m periods of a cosine wave with amplitude 2 if

$$z_k = \begin{cases} 1 & \text{if } k = m \text{ or } k = n-m \\ 0 & \text{else} \end{cases}$$

for $k = 1, \dots, n/2-1$.

Exercise 5. Implement a function for DFT and IDFT. Test with some random vectors $\vec{z} \in \mathbb{C}^n$ and $\vec{f} \in \mathbb{R}^n$ that

$$\begin{aligned} \vec{f} &= \text{IDFT}(\text{DFT}(\vec{f})) \\ \vec{z} &= \text{DFT}(\text{IDFT}(\vec{z})). \end{aligned}$$

Due to rounding errors of floating point arithmetic small deviations may occur. Do not forget the factor $1/n!$

Exercise 6. Let

$$f(t) = 3 + \cos(t+1) + 2\cos(3t+2) - 5\cos(4t-1)$$

be a $T_0 = 2\pi$ periodic function. Sample $f(t)$ at 16 equidistant points in the interval $[0, 2\pi]$ and form a vector $\vec{f} \in \mathbb{R}^{16}$. What are the corresponding Fourier coefficients $\vec{z} \in \mathbb{C}^{16}$? Use the program from the previous exercise to verify that the DFT actually gives those values.

Exercise 7. The matrices B and B^* consume a lot of memory for large n . However, the entries of the ℓ -th row of B can be obtained from the entries of row $\ell = 1$ of B by selecting every ℓ -th element. Prove that

$$B_{\ell k} = B_{1, (k\ell) \bmod n}$$

for all $\ell, k = 0, 1, \dots, n-1$.

Here \bmod is the modulo operation and

$$(k\ell) \bmod n = k\ell - un$$

where $u \in \mathbb{Z}$ is such that

$$0 \leq k\ell - un < n.$$

The same property holds for B^* . Implement the DFT and IDFT in a memory efficient way where only row $\ell = 1$ of B is stored.

Exercise 8. Let

$$p(t) = \sum_{\ell=-\infty}^{\infty} \delta(t - \ell T_s)$$

be a pulse train with period T_s .

Assume $f(t)$ is T_0 -periodic with $T_0 = nT_s$.

Show that $f(t)p(t)$ is also T_0 periodic.

Compute the Fourier coefficients z_k of $f(t)p(t)$ by integration and show that

$$z_k T_s = \underbrace{\frac{1}{n} \sum_{\ell=0}^{n-1} f_\ell e^{-2\pi j k \ell / n}}_{\text{DFT of } \bar{f}}$$

where $f_\ell = f(\ell T_s)$. This means that the DFT of the samples f_ℓ of one period of f can also be interpreted as the Fourier coefficients z_k of the sampled signal $f(t)p(t)$ times T_s for $k = 0, \dots, n-1$.

As $f(t)p(t)$ is not band limited, we have infinitely many non zero Fourier coefficients z_k . However, due to sampling in time domain the z_k are periodic. Show that $z_{k+n} = z_k$ for all k .