Heilbronn, den -

Prof. Dr. V. Stahl

Leistungsnachweis Mathematik 2

Studiengang:	ASE/IIT	Semester:	2
Hilfsmittel:	5 DIN-A4 Seiten	Bearbeitungszeit:	120 Minuten
Name:		Matrikelnr.:	
Punkte:		Note:	

- Es werden nur leserliche Klausuren bewertet.
- Vereinfachen Sie Ihre Lösungen so weit wie möglich.
- Übertragen Sie Ihre Lösungen am Ende der Prüfungszeit in die Kästen auf dem Aufgabenblatt. Nur diese werden bewertet.

Aufgabe 1. (10 Punkte) Sei a < b und

$$f(t) = \sigma(t-1)e^{t}$$

$$g(t) = \begin{cases} 1 & \text{falls } a \le t < b \\ 0 & \text{sonst.} \end{cases}$$

Berechnen Sie (f * g)(t).

Hinweis: Man kann viele Fallunterscheidungen vermeiden, wenn man Linearität und Zeitinverianz der Faltung nutzt. Mit

$$\hat{f}(t) = \sigma(t)e^t$$
 $\hat{g}(t) = \sigma(t)$

gilt

$$\begin{array}{lcl} f(t) & = & e\hat{f}(t-1) \\ g(t) & = & \hat{g}(t-a) - \hat{g}(t-b). \end{array}$$

Lösung von Aufgabe 1. Sei

$$\hat{f}(t) = \sigma(t)e^t$$
 $\hat{g}(t) = \sigma(t)$

Da beide Funktionen kausal sind, gilt

$$(\hat{f} * \hat{g})(t) = \sigma(t) \int_0^t e^{\tau} d\tau = [e^{\tau}]_0^t = \sigma(t)(e^t - 1).$$

Da $f(t) = e\hat{f}(t-1)$ folgt mit Linearität und Zeitinvarianz

$$(f * \hat{g})(t) = e\sigma(t-1)(e^{t-1}-1) = \sigma(t-1)(e^t-e).$$

Da

$$g(t) = \hat{g}(t-a) - \hat{g}(t-b)$$

folgt mit Linearität und Zeitinvarianz

$$(f * g)(t) = (f * \hat{g}_a)(t) - (f * \hat{g}_b)(t)$$

$$= \sigma(t - a - 1)(e^{t - a} - e) - \sigma(t - b - 1)(e^{t - b} - e)$$

$$= \begin{cases} 0 & \text{falls } t < a + 1 \\ e^{t - a} - e & \text{falls } t \ge a + 1 \text{ und } t < b + 1 \end{cases}$$

$$= \begin{cases} e^{t - a} - e^{t - b} & \text{falls } t \ge b + 1 \end{cases}$$

Man kann das Integral auch direkt lösen, was aber mühsamer ist:

$$(f * g)(t) = \int_{-\infty}^{\infty} f(t - \tau)g(\tau)d\tau$$
$$= \int_{a}^{b} \sigma(t - \tau - 1)e^{t - \tau}d\tau.$$

Eliminierung des σ -Terms im Integrand:

$$\begin{array}{rcl} \sigma(t-\tau-1) & = & 1 \\ t-\tau-1 & \geq & 0 \\ \tau & < & t-1 \end{array}$$

Damit kann die Obergrenze für τ auf das Minimum von b und t-1abgesenkt werden und man erhält

$$\int_a^{\min(b,t-1)} \sigma(t-\tau-1)e^{t-\tau}d\tau.$$

Wenn t-1 < a ist, d.h. die Obergrenze des Integrals kleiner als die Untergrenze, läuft man mit τ über Werte, die kleiner als t-1 sind und der Integrand ist Null. Falls $t-1 \ge a$ erhält man

$$\begin{split} \int_{a}^{\min(b,t-1)} e^{t-\tau} d\tau &= -e^{t} \left[e^{-\tau} \right]_{a}^{\min(b,t-1)} \\ &= -e^{t} \left(e^{-\min(b,t-1)} - e^{-a} \right) \\ &= e^{t-a} - e^{t-\min(b,t-1)} \\ &= \begin{cases} e^{t-a} - e^{t-(t-1)} & \text{falls } t-1 < b \\ e^{t-a} - e^{t-b} & \text{falls } t-1 \ge b \end{cases} \\ &= \begin{cases} e^{t-a} - e & \text{falls } t < b+1 \\ e^{t-a} - e^{t-b} & \text{falls } t \ge b+1 \end{cases} \end{split}$$

Insgesamt hat man damit

$$(f * g)(t) = \begin{cases} 0 & \text{falls } t < a + 1 \\ e^{t-a} - e & \text{falls } t \ge a + 1 \text{ und } t < b + 1 \\ e^{t-a} - e^{t-b} & \text{falls } t \ge b + 1 \end{cases}$$

Aufgabe 2. Sei

$$A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}.$$

Die beiden Vektorräume M_1 und M_2 sind definiert durch

$$M_1 = \{A\vec{x} \mid \vec{x} \in \mathbb{R}^4\}$$

 $M_2 = \{\vec{x} \mid A\vec{x} = \vec{0}\}.$

Berechnen Sie zu beiden Vektorräumen jeweils eine Basis.

Lösung von Aufgabe 2.

• M_1 ist die Menge aller Linearkombinationen der Spalten von A. Da die zweite und die vierte Spalte als Linearkombination der ersten und dritten Spalte dargestellt werden können, sind diese überflüssig, d.h.

$$L\bigg(\left(\begin{array}{c}1\\1\end{array}\right),\left(\begin{array}{c}1\\1\end{array}\right),\left(\begin{array}{c}0\\1\end{array}\right),\left(\begin{array}{c}0\\1\end{array}\right)\bigg)\quad =\quad L\bigg(\left(\begin{array}{c}1\\1\end{array}\right),\left(\begin{array}{c}0\\1\end{array}\right)\bigg).$$

Eine Basis von M_1 ist somit

$$\left(\left(\begin{array}{c} 1 \\ 1 \end{array} \right), \left(\begin{array}{c} 0 \\ 1 \end{array} \right) \right).$$

Da $M_1 = \mathbb{R}^2$, wäre auch die kanonische Basis eine Lösung:

$$\left(\left(\begin{array}{c} 1 \\ 0 \end{array} \right), \left(\begin{array}{c} 0 \\ 1 \end{array} \right) \right).$$

• M_2 ist die Lösungsmenge des homogenen LGS $A\vec{x} = \vec{0}$.

Damit sind x_2, x_4 beliebig und

$$x_3 = -x_4$$
$$x_1 = -x_2$$

Folglich ist

$$M_2 = \left\{ \begin{pmatrix} -x_2 \\ x_2 \\ -x_4 \\ x_4 \end{pmatrix} \mid x_2, x_4 \in \mathbb{R} \right\} = \left\{ x_2 \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 0 \\ 0 \\ -1 \\ 1 \end{pmatrix} \right\}.$$

Eine Basis ist daher

$$\left(\left(\begin{array}{c} -1\\1\\0\\0 \end{array} \right), \left(\begin{array}{c} 0\\0\\-1\\1 \end{array} \right) \right).$$

Aufgabe 3. (10 Punkte) Sei $f \in \mathbb{R}^2 \to \mathbb{R}^2$ mit

$$f\left(\begin{array}{c} x \\ y \end{array}\right) \ = \ \left(\begin{array}{c} x-y \\ x \end{array}\right).$$

Berechnen Sie die Matrixdarstellung B der Umkehrfunktion f^{-1} von f.

Lösung von Aufgabe 3. Matrixdarstellung von f.

$$f\left(\begin{array}{c} x \\ y \end{array}\right) \quad = \quad \left(\begin{array}{cc} 1 & -1 \\ 1 & 0 \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right).$$

Damit ist

$$A = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$$

die Matrixdarstellung von f. Die Matrixdarstellung von f^{-1} ist somit A^{-1} .

$$\begin{array}{c|cccc} 1 & -1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ \hline 1 & -1 & 1 & 0 \\ 0 & 1 & -1 & 1 \\ \hline 1 & 0 & 0 & 1 \\ 0 & 1 & -1 & 1 \\ \end{array}$$

Damit ist

$$B = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}$$

die Matrixdarstellung von f^{-1} .

Aufgabe 4. (10 Punkte) Berechnen Sie zwei Vektoren \vec{x}, \vec{y} so dass

$$\vec{x}\,\vec{y}^{\mathrm{T}} = \begin{pmatrix} 1 & 3 \\ 2 & 6 \end{pmatrix}.$$

Lösung von Aufgabe 4.

$$\vec{x} \ \vec{y}^{\mathrm{T}} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} (y_1 \quad y_2) = \begin{pmatrix} 1 & 3 \\ 2 & 6 \end{pmatrix}.$$

Damit ist

$$y_1\vec{x} = \begin{pmatrix} 1\\2 \end{pmatrix} \qquad y_2\vec{x} = \begin{pmatrix} 3\\6 \end{pmatrix}.$$

Aus der ersten Gleichung folgt

$$\vec{x} = \frac{1}{y_1} \begin{pmatrix} 1\\2 \end{pmatrix}.$$

Einsetzen in die zweite Gleichung ergibt

$$y_2 \frac{1}{y_1} \left(\begin{array}{c} 1 \\ 2 \end{array} \right) = \left(\begin{array}{c} 3 \\ 6 \end{array} \right).$$

Hieraus folgt $y_2/y_1 = 3$ bzw. $y_2 = 3y_1$ und

$$\vec{y} = \begin{pmatrix} y_1 \\ 3y_1 \end{pmatrix} = y_1 \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

für beliebiges $y_1 \neq 0$. Für $y_1 = 1$ erhält man z.B.

$$\vec{x} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \qquad \vec{y} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}.$$

Aufgabe 5. (10 Punkte) Berechnen Sie eine partikuläre Lösung der DGL

$$y'' - 2y' + 2y = e^x \cos(x).$$

Lösung von Aufgabe 5.

$$e^x \cos(x) = e^x \operatorname{re}(e^{jx}) = \operatorname{re}(e^{(1+j)x}).$$

Lösen der komplexen DGL

$$y'' - 2y' + 2y = e^{(1+j)x}$$
$$= e^{\mu x}$$

 $mit \ \mu = 1 + j.$

Charakteristisches Polynom

$$\lambda^2 - 2\lambda + 2$$

ausgewertet bei μ ergibt

$$\mu^{2} - 2\mu + 2 = (1+j)^{2} - 2(1+j) + 2$$
$$= 1 + 2j - 1 - 2 - 2j + 2$$
$$= 0$$

Ansatz im Resonanzfall:

$$y = cxe^{\mu x}$$

$$y' = c(e^{\mu x} + x\mu e^{\mu x}) = ce^{\mu x}(1 + \mu x)$$

$$y'' = c(\mu e^{\mu x}(1 + \mu x) + e^{\mu x}\mu) = ce^{\mu x}(2\mu + \mu^2 x)$$

Einsetzen in komplexe DGL.

$$ce^{\mu x} (2\mu + \mu^2 x - 2(1 + \mu x) + 2x) = e^{\mu x}$$

$$c\left(2\mu - 2 + x\underbrace{(\mu^2 - 2\mu + 2)}_{=0}\right) = 1$$

$$2c(\mu - 1) = 1$$

$$c = \frac{1/2}{\mu - 1} = \frac{1/2}{i} = -\frac{j}{2}.$$

Einsetzen von c in den Ansatz liefert eine partikuläre Lösung der komplexen DGL.

$$y = -\frac{j}{2}xe^{(1+j)x}.$$

Der Realteil hiervon ist eine partikuläre Lösung der rellen DGL.

$$y = -\frac{1}{2}x\operatorname{re}(je^{x}e^{jx})$$
$$= -\frac{1}{2}xe^{x}\operatorname{re}(j(\cos(x) + j\sin(x)))$$
$$= \frac{1}{2}xe^{x}\sin(x).$$

Aufgabe 6. (10 Punkte) Berechnen Sie die allgemeine Lösung der DGL

$$y' = \frac{x\sin(x)e^{-y}}{\sin(e^{y+1})}.$$

Lösung von Aufgabe 6. Die DGL ist separierbar.

$$e^y \sin(e^{y+1}) dy = x \sin(x) dx.$$

Stammfunktion auf der linken Seite mit Substitution.

$$u = e^{y+1}$$
, $\frac{du}{dy} = e^{y+1}$, $dy = \frac{1}{e^{y+1}}du$.

Damit ist eine Stammfunktion

$$\int e^y \sin(e^{y+1}) dy = \int e^y \sin(u) \frac{1}{e^{y+1}} du$$

$$= \int \frac{e^y}{e^y e} \sin(u) du$$

$$= \frac{1}{e} \int \sin(u) du$$

$$= -\frac{1}{e} \cos(u)$$

$$= -\frac{1}{e} \cos(e^{y+1}).$$

Eine Stammfunktion auf der rechten Seite mit partieller Integration.

$$\int x \sin(x) dx = -x \cos(x) - \int (-\cos(x)) dx$$
$$= -x \cos(x) + \int \cos(x) dx$$
$$= \sin(x) - x \cos(x).$$

Damit hat man die Gleichung

$$\begin{split} -\frac{1}{e}\cos(e^{y+1}) &= \sin(x) - x\cos(x) + C \\ \cos(e^{y+1}) &= ex\cos(x) - e\sin(x) + C \\ e^{y+1} &= \pm \arccos(ex\cos(x) - e\sin(x) + C) + 2k\pi, \quad k \in \mathbb{Z} \\ y+1 &= \ln\left(\pm \arccos(ex\cos(x) - e\sin(x) + C) + 2k\pi\right) \\ y &= \ln\left(\pm \arccos(ex\cos(x) - e\sin(x) + C) + 2k\pi\right) - 1. \end{split}$$

Aufgabe 7. (10 Punkte) Sei

$$f(t) = \begin{cases} 1/(t+1) & \text{falls } t \ge 1 \\ t & \text{falls } t < 1. \end{cases}$$

Finden Sie einen Funktionsterm für f ohne Fallunterscheidung, indem Sie Sprungfunktionen $\sigma(t)$ verwenden.

Berechnen Sie dann die verallgemeinerte Ableitung von f und vereinfachen Sie so weit wie möglich unter Anwendung der Ausblendeigenschaft und der verallgemeinerten Gleichheit von Funktionen.

Lösung von Aufgabe 7.

$$f(t) = \sigma(t-1)\frac{1}{t+1} + (1-\sigma(t-1))t$$

$$f'(t) = \delta(t-1)\frac{1}{t+1} - \sigma(t-1)\frac{1}{(t+1)^2} - \delta(t-1)t + \underbrace{1-\sigma(t-1)}_{=\sigma(1-t)}$$

$$= \frac{1}{2}\delta(t-1) - \sigma(t-1)\frac{1}{(t+1)^2} - \delta(t-1) + \sigma(1-t)$$

$$= -\frac{1}{2}\delta(t-1) - \sigma(t-1)\frac{1}{(t+1)^2} + \sigma(1-t).$$

Die Gleichheit

$$1 - \sigma(t - 1) = \sigma(1 - t)$$

gilt nur im verallgemeinerten Sinn, da die Funktionen an der Stelle t=1 ungleich sind.

Aufgabe 8. (10 Punkte) Berechnen Sie die allgemeine Lösung der DGL

$$\frac{1}{\cos(x)}y' + \frac{1}{\sin(x)}y = \sin(x)$$

für $0 < x < \pi/2$.

Lösung von Aufgabe 8. Es handelt sich um eine lineare DGL.

$$y' + \frac{\cos(x)}{\sin(x)}y = \sin(x)\cos(x).$$

Lösen der homogenen DGL

$$y' + \frac{\cos(x)}{\sin(x)}y = 0$$

$$y' = -\frac{\cos(x)}{\sin(x)}y$$

$$\frac{1}{y}dy = -\frac{\cos(x)}{\sin(x)}dx.$$

Eine Stammfunktion auf der rechten Seite erhält man mit Substitution

$$u = \sin(x), \quad \frac{du}{dx} = \cos(x), \quad dx = \frac{1}{\cos(x)}du.$$

Damit ist

$$\int -\frac{\cos(x)}{\sin(x)} dx = -\int \frac{\cos(x)}{u} \frac{1}{\cos(x)} du$$
$$= -\int \frac{1}{u} du$$
$$= -\ln|u|$$
$$= -\ln|\sin(x)|.$$

Da $0 < x < \pi/2$ ist

$$-\ln|\sin(x)| = -\ln(\sin(x)).$$

Gleichheit der Stammfunktionen ergibt

$$\begin{split} & \ln |y| &= -\ln(\sin(x)) + C \\ & |y| &= e^{-\ln(\sin(x)) + C} = K \frac{1}{e^{\ln(\sin(x))}} = K \frac{1}{\sin(x)}, \quad K \in \mathbb{R}^+ \\ & y &= K \frac{1}{\sin(x)}, \quad K \in \mathbb{R}. \end{split}$$

Variation der Konstanten.

$$y = k(x) \frac{1}{\sin(x)}$$

$$y' = k'(x) \frac{1}{\sin(x)} + k(x)(-1) \frac{1}{\sin^2(x)} \cos(x)$$

$$= k'(x) \frac{1}{\sin(x)} - k(x) \frac{\cos(x)}{\sin^2(x)}.$$

Einsetzen in die inhomogene DGL.

$$k'(x)\frac{1}{\sin(x)} - k(x)\frac{\cos(x)}{\sin^2(x)} + \frac{\cos(x)}{\sin(x)}k(x)\frac{1}{\sin(x)} = \sin(x)\cos(x)$$
$$k'(x)\frac{1}{\sin(x)} = \sin(x)\cos(x)$$
$$k'(x) = \sin^2(x)\cos(x).$$

Substitution

$$u = \sin(x), \quad \frac{du}{dx} = \cos(x), \quad dx = \frac{1}{\cos(x)}du.$$

Damit ist

$$k(x) = \int \sin^2(x) \cos(x) dx$$

$$= \int u^2 \cos(x) \frac{1}{\cos(x)} du$$

$$= \int u^2 du$$

$$= \frac{1}{3} u^3 + C$$

$$= \frac{1}{3} \sin^3(x) + C.$$

Einsetzen in den Ansatz:

$$y = k(x) \frac{1}{\sin(x)}$$
$$= \left(\frac{1}{3}\sin^3(x) + C\right) \frac{1}{\sin(x)}$$
$$= \frac{1}{3}\sin^2(x) + C\frac{1}{\sin(x)}.$$

Aufgabe 9. (10 Punkte) Für jede Funktion $f \in \mathbb{R} \to \mathbb{R}$ sei

$$f_{\infty}(t) = \int_{-\infty}^{t} f(u)du.$$

die Fläche unter f zwischen $-\infty$ und t.

Zeigen Sie, dass für alle Funktionen $f,g\in\mathbb{R}\to\mathbb{R}$ gilt

$$f_{\infty} * g = f * g_{\infty}$$

sofern die Integrale existieren. Sie dürfen alle Eigenschaften der Faltung verwenden, die in der Vorlesung genannt wurden.

Lösung von Aufgabe 9. Unter Verwendung der Faltung gilt

$$f_{\infty}(t) = (\sigma * f)(t).$$

Damit gilt mit dem Assoziativgesetz und dem Kommutativgesetz der Faltung

$$\begin{array}{rclcrcl} f_{\infty} * g & = & (\sigma * f) * g & = & \sigma * (f * g) & = & \sigma * (g * f) \\ & = & (\sigma * g) * f & = & f * (\sigma * g) & = & f * g_{\infty}. \end{array}$$

Alternativ kann man die Aussage auch wie folgt beweisen:

$$(f_{\infty} * g)(t) = \int_{-\infty}^{\infty} f_{\infty}(t - \tau)g(\tau)d\tau$$
$$= \int_{\tau = -\infty}^{\infty} \left(\int_{u = -\infty}^{t - \tau} f(u)du \right) g(\tau)d\tau.$$

Damit man die Reihenfolge der Integrale vertauschen kann, substituiert man im inneren Integral

$$x = u + \tau$$
, $\frac{dx}{du} = 1$, $du = dx$.

Damit erhält man

$$(f_{\infty} * g)(t) = \int_{\tau = -\infty}^{\infty} \left(\int_{x = -\infty}^{t} f(x - \tau) dx \right) g(\tau) d\tau$$

$$= \int_{x = -\infty}^{t} \int_{\tau = -\infty}^{\infty} f(x - \tau) g(\tau) d\tau dx$$

$$= \int_{-\infty}^{t} (f * g)(x) dx$$

$$= (f * g)_{\infty}.$$

Durch Umbennen von f und g erhält man in gleicher Weise

$$(g_{\infty} * f)(t) = (g * f)_{\infty}.$$

Mit dem Kommutativgesetz der Faltung gilt daher

$$(f_{\infty} * g) = (f * g)_{\infty} = (g * f)_{\infty} = g_{\infty} * f = f * g_{\infty}.$$

Aufgabe 10. (10 Punkte) Sei $A \in \mathbb{R}^{n \times n}$ eine beliebige Matrix und $B \in \mathbb{R}^{n \times n}$ eine singuläre Matrix. Beweisen Sie, dass dann auch AB und BA singulär sind.

Sie dürfen alle in der Vorlesung gezeigten Theoreme verwenden.

Lösung von Aufgabe 10.

• Zu zeigen: AB ist singulär. Da B singulär ist, gibt es ein $\vec{x} \in \mathbb{R}^n$ mit $\vec{x} \neq \vec{0}$ und

$$B\vec{x} = \vec{0}.$$

Folglich ist

$$(AB)\vec{x} = A(B\vec{x}) = A\vec{0} = \vec{0}.$$

Damit hat das homogene LGS $AB\vec{x}=\vec{0}$ eine nichttriviale Lösung $\vec{x}\neq\vec{0}$ und folglich ist die Matrix AB singulär.

• Zu zeigen: BA ist singulär. Da B singulär ist, gibt es ein $\vec{x} \in \mathbb{R}^n$ mit $\vec{x} \neq \vec{0}$ und

$$B\vec{x} = \vec{0}$$
.

Wenn A singulär ist, ist auch BA singulär nach dem vorigen Beweis. Wenn A regulär ist, gibt es genau ein $y \in \mathbb{R}^n$ so dass

$$A\vec{y} = \vec{x}$$
.

Da $\vec{x} \neq \vec{0}$ folgt $\vec{y} \neq \vec{0}$. Damit ist

$$(BA)\vec{y} = B(A\vec{y}) = B\vec{x} = \vec{0}.$$

Folglich ist BA singulär.

Alternativ hätte man auch so vorgehen können: BA ist singulär genau dann wenn $(BA)^{\rm T}$ singulär ist. Umformen ergibt

$$(BA)^{\mathrm{T}} = A^{\mathrm{T}}B^{\mathrm{T}}.$$

Da B singulär ist, ist auch $B^{\rm T}$ singulär. Im ersten Teil wurde gezeigt, dass ein Produkt von Matrizen singulär ist, wenn der zweite Faktor singulär ist. Damit ist $A^{\rm T}B^{\rm T}$ singulär und folglich auch $(BA)^{\rm T}$ bzw. BA.